masterdezign
commited on
Commit
·
c927860
1
Parent(s):
277e920
Update README.md
Browse files
README.md
CHANGED
@@ -25,12 +25,48 @@ This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4
|
|
25 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
|
27 |
## Usage (with Stable-baselines3)
|
28 |
-
TODO: Add your code
|
29 |
-
|
30 |
|
31 |
```python
|
32 |
-
from stable_baselines3 import
|
33 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
|
|
36 |
```
|
|
|
25 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
|
27 |
## Usage (with Stable-baselines3)
|
|
|
|
|
28 |
|
29 |
```python
|
30 |
+
from stable_baselines3.common.env_util import make_atari_env
|
31 |
+
from stable_baselines3.common.vec_env import VecFrameStack
|
32 |
+
from stable_baselines3 import DQN
|
33 |
+
from stable_baselines3.common.evaluation import evaluate_policy
|
34 |
+
from huggingface_sb3 import load_from_hub, package_to_hub
|
35 |
+
from stable_baselines3.common.utils import set_random_seed
|
36 |
+
|
37 |
+
env_id = "SpaceInvadersNoFrameskip-v4"
|
38 |
+
|
39 |
+
env = make_atari_env(env_id,
|
40 |
+
n_envs=12,
|
41 |
+
# Improving reproducibility
|
42 |
+
seed=1)
|
43 |
+
env = VecFrameStack(env, n_stack=4) # Stack last four images
|
44 |
+
|
45 |
+
# Improving reproducibility
|
46 |
+
set_random_seed(42)
|
47 |
+
|
48 |
+
# Using these parameters as default: https://huggingface.co/micheljperez/dqn-SpaceInvadersNoFrameskip-v4
|
49 |
+
model = DQN(policy = "CnnPolicy",
|
50 |
+
env = env,
|
51 |
+
batch_size = 32,
|
52 |
+
buffer_size = 100_000,
|
53 |
+
exploration_final_eps = 0.01,
|
54 |
+
exploration_fraction = 0.025,
|
55 |
+
gradient_steps = 1,
|
56 |
+
learning_rate = 1e-4,
|
57 |
+
learning_starts = 100_000,
|
58 |
+
optimize_memory_usage = True,
|
59 |
+
replay_buffer_kwargs = {"handle_timeout_termination": False},
|
60 |
+
target_update_interval = 1000,
|
61 |
+
train_freq = 4,
|
62 |
+
# normalize = False,
|
63 |
+
tensorboard_log = "./tensorboard",
|
64 |
+
verbose=1
|
65 |
+
)
|
66 |
+
|
67 |
+
f = load_from_hub('masterdezign/dqn-SpaceInvadersNoFrameskip-v4', 'dqn-SpaceInvadersNoFrameskip-v4.zip')
|
68 |
+
model = model.load(f)
|
69 |
|
70 |
+
mean_reward, std_reward = evaluate_policy(model, env)
|
71 |
+
print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}")
|
72 |
```
|