masakiai commited on
Commit
5581097
·
verified ·
1 Parent(s): 9003762

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +115 -187
README.md CHANGED
@@ -1,199 +1,127 @@
 
1
  ---
2
- library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
 
 
 
 
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
  ---
3
+ base_model: google/gemma-2-9b
4
+ library_name: peft
5
  ---
6
 
7
+ # モデルカード: google/gemma-2-9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
 
9
 
10
+ ## モデル概要
11
 
12
+ このモデルは、松尾研LLM講座の終了課題の提出用のモデルです。
13
 
14
+ | 項目 | 内容 |
15
+ |------|------|
16
+ | 開発者 | masakiai |
17
+ | ファインチューニング元モデル | [google/gemma-2-9b] |
18
+ | 対応言語 | 日本語 |
19
+ | ライセンス | [apache-2.0]|
20
 
 
21
 
22
+ ## モデルソース
23
 
24
+ - **リポジトリ:** [https://huggingface.co/masakiai/gemma-2-9b-finetune]
25
 
26
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ ## 使用方法
29
+
30
+ ### 以下は、elyza-tasks-100-TV-0.jsonlの回答のためのコードです
31
+
32
+ ```python
33
+ import torch
34
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
35
+ import json
36
+ from tqdm import tqdm
37
+ import os
38
+ import re
39
+
40
+ # 環境変数の設定
41
+ HF_TOKEN = os.getenv("HF_TOKEN")
42
+ model_name = "masakiai/llm-jp-gemma-2-9b-finetune"
43
+ ELYZA_TASKS_100_TV_0_JSONL_PATH = "./elyza-tasks-100-TV_0.jsonl"
44
+
45
+ # 8ビット量子化の設定
46
+ bnb_config = BitsAndBytesConfig(
47
+ load_in_8bit=True
48
+ )
49
+ # モデルの読み込み
50
+ model = AutoModelForCausalLM.from_pretrained(
51
+ model_name,
52
+ quantization_config=bnb_config,
53
+ device_map="auto"
54
+ )
55
+
56
+ # トークナイザーの読み込み
57
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
58
+
59
+ # データセットの読み込み
60
+ datasets = []
61
+ with open(ELYZA_TASKS_100_TV_0_JSONL_PATH , "r") as f:
62
+ item = ""
63
+ for line in f:
64
+ line = line.strip()
65
+ item += line
66
+ if item.endswith("}"):
67
+ datasets.append(json.loads(item))
68
+ item = ""
69
+
70
+ # 推論の実行
71
+ results = []
72
+ for data in tqdm(datasets):
73
+
74
+ input = data["input"]
75
+
76
+ prompt = f"""### 指示
77
+ {input}
78
+ ### 回答
79
+ """
80
+
81
+ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
82
+ attention_mask = torch.ones_like(tokenized_input)
83
+
84
+ with torch.no_grad():
85
+ outputs = model.generate(
86
+ tokenized_input,
87
+ attention_mask=attention_mask,
88
+ max_new_tokens=100,
89
+ do_sample=False,
90
+ repetition_penalty=1.2,
91
+ pad_token_id=tokenizer.eos_token_id
92
+ )[0]
93
+ output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
94
+ results.append({"task_id": data["task_id"], "input": input, "output": output})
95
+
96
+
97
+ # ファイルの保存
98
+ jsonl_id = re.sub(".*/", "", model_name)
99
+ with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
100
+ for result in results:
101
+ json.dump(result, f, ensure_ascii=False)
102
+ f.write('\n')
103
+ ```
104
+
105
+ ### 直接的な使用
106
+
107
+ このモデルは以下のような日本語タスクに使用できます:
108
+ - テキスト生成
109
+ - 質問応答
110
+ - 翻訳
111
+ - 要約
112
+
113
+ ```python
114
+ from transformers import AutoModelForCausalLM, AutoTokenizer
115
+ import os
116
+
117
+ HF_TOKEN = os.getenv("HF_TOKEN")
118
+ model_name = "masakiai/gemma-2-9b-finetune"
119
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
120
+ model = AutoModelForCausalLM.from_pretrained(model_name)
121
+
122
+ text = "日本の文化について教えてください。"
123
+ input_ids = tokenizer(text, return_tensors="pt").input_ids
124
+ output = model.generate(input_ids, max_length=50)
125
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
126
+ ```
127
+ ---