OpenAIChatAtomicFlow / OpenAIChatAtomicFlow.py
martinjosifoski's picture
Update instantiation of flow.
6542487
raw
history blame
12.7 kB
import pprint
from copy import deepcopy
import hydra
import colorama
import time
from typing import List, Dict, Optional, Any
from langchain import PromptTemplate
import langchain
from langchain.schema import HumanMessage, AIMessage, SystemMessage
from flows.history import FlowHistory
from flows.message_annotators.abstract import MessageAnnotator
from flows.base_flows.abstract import AtomicFlow
from flows.datasets import GenericDemonstrationsDataset
from flows import utils
from flows.messages.chat_message import ChatMessage
from flows.utils.caching_utils import flow_run_cache
log = utils.get_pylogger(__name__)
class OpenAIChatAtomicFlow(AtomicFlow):
model_name: str
generation_parameters: Dict
system_message_prompt_template: PromptTemplate
human_message_prompt_template: PromptTemplate
system_name: str = "system"
user_name: str = "user"
assistant_name: str = "assistant"
n_api_retries: int = 6
wait_time_between_retries: int = 20
query_message_prompt_template: Optional[PromptTemplate] = None
demonstrations: GenericDemonstrationsDataset = None
demonstrations_response_template: PromptTemplate = None
response_annotators: Optional[Dict[str, MessageAnnotator]] = {}
def __init__(self, **kwargs):
self._validate_parameters(kwargs)
super().__init__(**kwargs)
assert self.flow_config["name"] not in [
"system",
"user",
"assistant",
], f"Flow name '{self.flow_config['name']}' cannot be 'system', 'user' or 'assistant'"
def set_up_flow_state(self):
super().set_up_flow_state()
self.flow_state["conversation_initialized"] = False
@classmethod
def _validate_parameters(cls, kwargs):
# ToDo: Deal with this in a cleaner way (with less repetition)
super()._validate_parameters(kwargs)
# ~~~ Model generation ~~~
if "model_name" not in kwargs["flow_config"]:
raise KeyError("model_name not specified in the flow_config.")
if "generation_parameters" not in kwargs["flow_config"]:
raise KeyError("generation_parameters not specified in the flow_config.")
# ~~~ Prompting ~~~
if "system_message_prompt_template" not in kwargs:
raise KeyError("system_message_prompt_template not passed to the constructor.")
if "query_message_prompt_template" not in kwargs:
raise KeyError("query_message_prompt_template not passed to the constructor.")
if "human_message_prompt_template" not in kwargs:
raise KeyError("human_message_prompt_template not passed to the constructor.")
@classmethod
def _set_up_prompts(cls, config):
kwargs = {}
kwargs["system_message_prompt_template"] = \
hydra.utils.instantiate(config['system_message_prompt_template'], _convert_="partial")
kwargs["query_message_prompt_template"] = \
hydra.utils.instantiate(config['query_message_prompt_template'], _convert_="partial")
kwargs["human_message_prompt_template"] = \
hydra.utils.instantiate(config['human_message_prompt_template'], _convert_="partial")
return kwargs
@classmethod
def _set_up_demonstration_templates(cls, config):
kwargs = {}
if "demonstrations_response_template" in config:
kwargs["demonstrations_response_template"] = \
hydra.utils.instantiate(config['demonstrations_response_template'], _convert_="partial")
return kwargs
@classmethod
def _set_up_response_annotators(cls, config):
response_annotators = config.get("response_annotators", {})
if len(response_annotators) > 0:
for key, config in response_annotators.items():
response_annotators[key] = hydra.utils.instantiate(config, _convert_="partial")
return {"response_annotators": response_annotators}
@classmethod
def instantiate_from_config(cls, config):
flow_config = deepcopy(config)
kwargs = {"flow_config": flow_config}
# ~~~ Set up prompts ~~~
kwargs.update(cls._set_up_prompts(flow_config))
# ~~~ Set up demonstration templates ~~~
kwargs.update(cls._set_up_demonstration_templates(flow_config))
# ~~~ Set up response annotators ~~~
kwargs.update(cls._set_up_response_annotators(flow_config))
# ~~~ Instantiate flow ~~~
return cls(**kwargs)
def _is_conversation_initialized(self):
return self.flow_state["conversation_initialized"]
def expected_inputs_given_state(self):
if self._is_conversation_initialized():
return ["query"]
else:
return self.flow_config["expected_inputs"]
@staticmethod
def _get_message(prompt_template, input_data: Dict[str, Any]):
template_kwargs = {}
for input_variable in prompt_template.input_variables:
template_kwargs[input_variable] = input_data[input_variable]
msg_content = prompt_template.format(**template_kwargs)
return msg_content
def _get_demonstration_query_message_content(self, sample_data: Dict):
input_variables = self.query_message_prompt_template.input_variables
return self.query_message_prompt_template.format(**{k: sample_data[k] for k in input_variables}), []
def _get_demonstration_response_message_content(self, sample_data: Dict):
input_variables = self.demonstrations_response_template.input_variables
return self.demonstrations_response_template.format(**{k: sample_data[k] for k in input_variables}), []
def _get_annotator_with_key(self, key: str):
for _, ra in self.response_annotators.items():
if ra.key == key:
return ra
def _response_parsing(self, response: str, expected_outputs: List[str]):
target_annotators = [ra for _, ra in self.response_annotators.items() if ra.key in expected_outputs]
if len(target_annotators) == 0:
return {expected_outputs[0]: response}
parsed_outputs = {}
for ra in target_annotators:
parsed_out = ra(response)
parsed_outputs.update(parsed_out)
return parsed_outputs
def _add_demonstrations(self):
if self.demonstrations is not None:
for example in self.demonstrations:
query, parents = self._get_demonstration_query_message_content(example)
response, parents = self._get_demonstration_response_message_content(example)
self._log_chat_message(content=query,
message_creator=self.user_name,
parent_message_ids=parents)
self._log_chat_message(content=response,
message_creator=self.assistant_name,
parent_message_ids=parents)
def _log_chat_message(self, message_creator: str, content: str, parent_message_ids: List[str] = None):
chat_message = ChatMessage(
message_creator=message_creator,
parent_message_ids=parent_message_ids,
flow_runner=self.flow_config["name"],
flow_run_id=self.flow_run_id,
content=content
)
return self._log_message(chat_message)
def _initialize_conversation(self, input_data: Dict[str, Any]):
# ~~~ Add the system message ~~~
system_message_content = self._get_message(self.system_message_prompt_template, input_data)
self._log_chat_message(content=system_message_content,
message_creator=self.system_name)
# ~~~ Add the demonstration query-response tuples (if any) ~~~
self._add_demonstrations()
self._update_state(update_data={"conversation_initialized": True})
def get_conversation_messages(self, message_format: Optional[str] = None):
messages = self.flow_state["history"].get_chat_messages()
if message_format is None:
return messages
elif message_format == "open_ai":
processed_messages = []
for message in messages:
if message.message_creator == self.system_name:
processed_messages.append(SystemMessage(content=message.content))
elif message.message_creator == self.assistant_name:
processed_messages.append(AIMessage(content=message.content))
elif message.message_creator == self.user_name:
processed_messages.append(HumanMessage(content=message.content))
else:
raise ValueError(f"Unknown name: {message.message_creator}")
return processed_messages
else:
raise ValueError(
f"Currently supported conversation message formats: 'open_ai'. '{message_format}' is not supported")
def _call(self):
api_key = self.flow_state["api_key"]
backend = langchain.chat_models.ChatOpenAI(
model_name=self.flow_config["model_name"],
openai_api_key=api_key,
**self.flow_config["generation_parameters"],
)
messages = self.get_conversation_messages(
message_format="open_ai"
)
_success = False
attempts = 1
error = None
response = None
while attempts <= self.n_api_retries:
try:
response = backend(messages).content
_success = True
break
except Exception as e:
log.error(
f"Error {attempts} in calling backend: {e}. Key used: `{api_key}`. "
f"Retrying in {self.wait_time_between_retries} seconds..."
)
log.error(
f"API call raised Exception with the following arguments arguments: "
f"\n{self.flow_state['history'].to_string()}"
)
attempts += 1
time.sleep(self.wait_time_between_retries)
error = e
if not _success:
raise error
if self.flow_config["verbose"]:
messages_str = self.flow_state["history"].to_string()
log.info(
f"\n{colorama.Fore.MAGENTA}~~~ History [{self.flow_config['name']}] ~~~\n"
f"{colorama.Style.RESET_ALL}{messages_str}"
)
return response
def _prepare_conversation(self, input_data: Dict[str, Any]):
if self._is_conversation_initialized():
# ~~~ Check that the message has a `query` field ~~~
user_message_content = self.human_message_prompt_template.format(query=input_data["query"])
else:
self._initialize_conversation(input_data)
user_message_content = self._get_message(self.query_message_prompt_template, input_data)
self._log_chat_message(message_creator=self.user_name,
content=user_message_content)
@flow_run_cache()
def run(self, input_data: Dict[str, Any], expected_outputs: List[str]) -> Dict[str, Any]:
# ~~~ Chat-specific preparation ~~~
self._prepare_conversation(input_data)
# ~~~ Call ~~~
response = self._call()
answer_message = self._log_chat_message(
message_creator=self.flow_config["assistant_name"],
content=response
)
# ~~~ Response parsing ~~~
parsed_outputs = self._response_parsing(
response=response,
expected_outputs=expected_outputs
)
self._update_state(update_data=parsed_outputs)
if self.flow_config["verbose"]:
parsed_output_messages_str = pprint.pformat({k: m for k, m in parsed_outputs.items()},
indent=4)
log.info(
f"\n{colorama.Fore.MAGENTA}~~~ "
f"Response [{answer_message.message_creator} -- "
f"{answer_message.message_id} -- "
f"{answer_message.flow_run_id}] ~~~"
f"\n{colorama.Fore.YELLOW}Content: {answer_message}{colorama.Style.RESET_ALL}"
f"\n{colorama.Fore.YELLOW}Parsed Outputs: {parsed_output_messages_str}{colorama.Style.RESET_ALL}"
)
# ~~~ The final answer should be in self.flow_state, thus allow_class_namespace=False ~~~
return self._get_keys_from_state(keys=expected_outputs, allow_class_namespace=False)