mart9992's picture
m
06ba6ce
raw
history blame
17.7 kB
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Integration with Deepspeed
"""
import importlib.metadata as importlib_metadata
import importlib.util
import weakref
from functools import partialmethod
from ..dependency_versions_check import dep_version_check
from ..utils import is_accelerate_available, is_torch_available, logging
if is_torch_available():
import torch
from ..optimization import get_scheduler
logger = logging.get_logger(__name__)
def is_deepspeed_available():
package_exists = importlib.util.find_spec("deepspeed") is not None
# Check we're not importing a "deepspeed" directory somewhere but the actual library by trying to grab the version
# AND checking it has an author field in the metadata that is HuggingFace.
if package_exists:
try:
_ = importlib_metadata.metadata("deepspeed")
return True
except importlib_metadata.PackageNotFoundError:
return False
if is_accelerate_available() and is_deepspeed_available():
from accelerate.utils.deepspeed import HfDeepSpeedConfig as DeepSpeedConfig
else:
# Inherits from a dummy `object` if accelerate is not available, so that python succeeds to import this file.
# Deepspeed glue code will never inherit this dummy object as it checks if accelerate is available.
from builtins import object as DeepSpeedConfig
class HfDeepSpeedConfig(DeepSpeedConfig):
"""
This object contains a DeepSpeed configuration dictionary and can be quickly queried for things like zero stage.
A `weakref` of this object is stored in the module's globals to be able to access the config from areas where
things like the Trainer object is not available (e.g. `from_pretrained` and `_get_resized_embeddings`). Therefore
it's important that this object remains alive while the program is still running.
[`Trainer`] uses the `HfTrainerDeepSpeedConfig` subclass instead. That subclass has logic to sync the configuration
with values of [`TrainingArguments`] by replacing special placeholder values: `"auto"`. Without this special logic
the DeepSpeed configuration is not modified in any way.
Args:
config_file_or_dict (`Union[str, Dict]`): path to DeepSpeed config file or dict.
"""
def __init__(self, config_file_or_dict):
# set global weakref object
set_hf_deepspeed_config(self)
dep_version_check("accelerate")
dep_version_check("deepspeed")
super().__init__(config_file_or_dict)
class HfTrainerDeepSpeedConfig(HfDeepSpeedConfig):
"""
The `HfTrainerDeepSpeedConfig` object is meant to be created during `TrainingArguments` object creation and has the
same lifespan as the latter.
"""
def __init__(self, config_file_or_dict):
super().__init__(config_file_or_dict)
self._dtype = None
self.mismatches = []
def dtype(self):
if self._dtype is None:
raise ValueError("trainer_config_process() wasn't called yet to tell dtype")
return self._dtype
def is_auto(self, ds_key_long):
val = self.get_value(ds_key_long)
if val is None:
return False
else:
return val == "auto"
def fill_match(self, ds_key_long, hf_val, hf_key=None, must_match=True):
"""
A utility method that massages the config file and can optionally verify that the values match.
1. Replace "auto" values with `TrainingArguments` value.
2. If it wasn't "auto" and `must_match` is true, then check that DS config matches Trainer
config values and if mismatched add the entry to `self.mismatched` - will assert during
`trainer_config_finalize` for one or more mismatches.
"""
config, ds_key = self.find_config_node(ds_key_long)
if config is None:
return
if config.get(ds_key) == "auto":
config[ds_key] = hf_val
return
if not must_match:
return
ds_val = config.get(ds_key)
if ds_val is not None and ds_val != hf_val:
self.mismatches.append(f"- ds {ds_key_long}={ds_val} vs hf {hf_key}={hf_val}")
fill_only = partialmethod(fill_match, must_match=False)
def trainer_config_process(self, args):
"""
Adjust the config with `TrainingArguments` values. This stage is run during `TrainingArguments` object
creation.
"""
# DeepSpeed does:
# train_batch_size = world_size * train_micro_batch_size_per_gpu * gradient_accumulation_steps
train_batch_size = args.world_size * args.per_device_train_batch_size * args.gradient_accumulation_steps
self.fill_match(
"train_micro_batch_size_per_gpu", args.per_device_train_batch_size, "per_device_train_batch_size"
)
self.fill_match("gradient_accumulation_steps", args.gradient_accumulation_steps, "gradient_accumulation_steps")
self.fill_match("train_batch_size", train_batch_size, "train_batch_size (calculated)")
self.fill_match("gradient_clipping", args.max_grad_norm, "max_grad_norm")
self.fill_match("optimizer.params.lr", args.learning_rate, "learning_rate")
self.fill_match("optimizer.params.betas", [args.adam_beta1, args.adam_beta2], "adam_beta1+adam_beta2")
self.fill_match("optimizer.params.eps", args.adam_epsilon, "adam_epsilon")
self.fill_match("optimizer.params.weight_decay", args.weight_decay, "weight_decay")
self.fill_only("scheduler.params.warmup_min_lr", 0) # not a trainer arg
self.fill_match("scheduler.params.warmup_max_lr", args.learning_rate, "learning_rate")
# total_num_steps - will get set in trainer_config_finalize
# fp16
if args.fp16 or args.fp16_full_eval:
fp16_backend = "apex" if args.fp16_backend == "apex" else "amp"
else:
fp16_backend = None
if args.save_on_each_node:
# deepspeed uses shared storage by default. Let's override this setting if save_on_each_node == True
self.config["checkpoint"] = self.config.get("checkpoint", {})
self.config["checkpoint"]["use_node_local_storage"] = args.save_on_each_node
# amp: similar to the pytorch native amp - it has a bunch of optional params but we won't set
# any here unless the user did the work
self.fill_match(
"fp16.enabled",
((args.fp16 or args.fp16_full_eval) and fp16_backend == "amp"),
"fp16|fp16_full_eval+fp16_backend(amp)",
)
# apex: delegates amp work to apex (which needs to be available), but it cannot be used with any
# ZeRO features
self.fill_match("amp.enabled", fp16_backend == "apex", "fp16+fp16_backend(apex)")
self.fill_match("amp.opt_level", args.fp16_opt_level, "fp16_opt_level")
self.fill_match("bf16.enabled", (args.bf16 or args.bf16_full_eval), "bf16|bf16_full_eval")
# deepspeed's default mode is fp16 unless there is a config that says differently
if self.is_true("bf16.enabled"):
self._dtype = torch.bfloat16
elif self.is_false("fp16.enabled"):
self._dtype = torch.float32
else:
self._dtype = torch.float16
def trainer_config_finalize(self, args, model, num_training_steps):
"""
This stage is run after we have the model and know num_training_steps.
Now we can complete the configuration process.
"""
# zero
# deal with config keys that use `auto` value and rely on model's hidden_size
hidden_size_based_keys = [
"zero_optimization.reduce_bucket_size",
"zero_optimization.stage3_prefetch_bucket_size",
"zero_optimization.stage3_param_persistence_threshold",
]
hidden_size_auto_keys = [x for x in hidden_size_based_keys if self.is_auto(x)]
if len(hidden_size_auto_keys) > 0:
if hasattr(model.config, "hidden_size"):
hidden_size = model.config.hidden_size
elif hasattr(model.config, "hidden_sizes"):
# if there are many hidden sizes pick the largest one
hidden_size = max(model.config.hidden_sizes)
else:
raise ValueError(
"The model's config file has neither `hidden_size` nor `hidden_sizes` entry, "
"therefore it's not possible to automatically fill out the following `auto` entries "
f"in the DeepSpeed config file: {hidden_size_auto_keys}. You can fix that by replacing "
"`auto` values for these keys with an integer value of your choice."
)
self.fill_only("zero_optimization.reduce_bucket_size", hidden_size * hidden_size)
if self.is_zero3():
# automatically assign the optimal config values based on model config
self.fill_only("zero_optimization.stage3_prefetch_bucket_size", 0.9 * hidden_size * hidden_size)
self.fill_only("zero_optimization.stage3_param_persistence_threshold", 10 * hidden_size)
# scheduler
self.fill_match("scheduler.params.total_num_steps", num_training_steps, "num_training_steps (calculated)")
self.fill_match("scheduler.params.warmup_num_steps", args.get_warmup_steps(num_training_steps), "warmup_steps")
if len(self.mismatches) > 0:
mismatches = "\n".join(self.mismatches)
raise ValueError(
"Please correct the following DeepSpeed config values that mismatch TrainingArguments"
f" values:\n{mismatches}\nThe easiest method is to set these DeepSpeed config values to 'auto'."
)
# keep the config object global to be able to access it anywhere during TrainingArguments life-cycle
_hf_deepspeed_config_weak_ref = None
def set_hf_deepspeed_config(hf_deepspeed_config_obj):
# this is a special weakref global object to allow us to get to Deepspeed config from APIs
# that don't have an easy way to get to the Deepspeed config outside of the Trainer domain.
global _hf_deepspeed_config_weak_ref
# will go away automatically when HfDeepSpeedConfig is destroyed (when TrainingArguments is destroyed)
_hf_deepspeed_config_weak_ref = weakref.ref(hf_deepspeed_config_obj)
def unset_hf_deepspeed_config():
# useful for unit tests to ensure the global state doesn't leak - call from `tearDown` method
global _hf_deepspeed_config_weak_ref
_hf_deepspeed_config_weak_ref = None
def is_deepspeed_zero3_enabled():
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
return _hf_deepspeed_config_weak_ref().is_zero3()
else:
return False
def deepspeed_config():
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
return _hf_deepspeed_config_weak_ref().config
else:
return None
def deepspeed_optim_sched(trainer, hf_deepspeed_config, args, num_training_steps, model_parameters):
"""
A convenience wrapper that deals with optimizer and lr scheduler configuration.
"""
from accelerate.utils import DummyOptim, DummyScheduler
config = hf_deepspeed_config.config
# Optimizer + Scheduler
# Currently supported combos:
# 1. DS scheduler + DS optimizer: Yes
# 2. HF scheduler + HF optimizer: Yes
# 3. DS scheduler + HF optimizer: Yes
# 4. HF scheduler + DS optimizer: No
#
# Unless Offload is enabled in which case it's:
# 1. DS scheduler + DS optimizer: Yes
# 2. HF scheduler + HF optimizer: Mostly*
# 3. DS scheduler + HF optimizer: Mostly*
# 4. HF scheduler + DS optimizer: Yes
#
# Mostly*: All non-native DeepSpeed optimizers that have both CPU and GPU implementation should work (except LAMB)
optimizer = None
if "optimizer" in config:
if args.adafactor:
raise ValueError(
"--adafactor was passed, but also found `optimizer` configured in the DeepSpeed config. "
"Only one optimizer can be configured."
)
optimizer = DummyOptim(params=model_parameters)
else:
if hf_deepspeed_config.is_offload():
logger.info(
"Detected ZeRO Offload and non-DeepSpeed optimizers: This combination should work as long as the"
" custom optimizer has both CPU and GPU implementation (except LAMB)"
)
# ds supports Adam, OneBitAdam, and Lamb optimizers and can import other optimizers from torch.
# But trainer uses AdamW by default.
optimizer = trainer.create_optimizer()
# To use other optimizers requires voiding warranty with: `zero_allow_untested_optimizer`
config["zero_allow_untested_optimizer"] = True
lr_scheduler = None
if "scheduler" in config:
lr_scheduler = DummyScheduler(optimizer)
else:
if isinstance(optimizer, DummyOptim):
def _lr_scheduler_callable(optimizer):
return get_scheduler(
trainer.args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=trainer.args.get_warmup_steps(num_training_steps),
num_training_steps=num_training_steps,
)
lr_scheduler = DummyScheduler(optimizer, lr_scheduler_callable=_lr_scheduler_callable)
else:
lr_scheduler = trainer.create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer)
return optimizer, lr_scheduler
def deepspeed_init(trainer, num_training_steps, inference=False):
"""
Init DeepSpeed, after updating the DeepSpeed configuration with any relevant Trainer's args.
If `resume_from_checkpoint` was passed then an attempt to resume from a previously saved checkpoint will be made.
Args:
trainer: Trainer object
num_training_steps: per single gpu
resume_from_checkpoint: path to a checkpoint if to resume from after normal DeepSpeedEngine load
inference: launch in inference mode (no optimizer and no lr scheduler)
Returns: optimizer, lr_scheduler
We may use `deepspeed_init` more than once during the life of Trainer, when we do - it's a temp hack based on:
https://github.com/microsoft/DeepSpeed/issues/1394#issuecomment-937405374 until Deepspeed fixes a bug where it
can't resume from a checkpoint after it did some stepping https://github.com/microsoft/DeepSpeed/issues/1612
"""
from deepspeed.utils import logger as ds_logger
model = trainer.model
args = trainer.args
hf_deepspeed_config = trainer.accelerator.state.deepspeed_plugin.hf_ds_config
# resume config update - some bits like `model` and `num_training_steps` only become available during train
hf_deepspeed_config.trainer_config_finalize(args, model, num_training_steps)
# set the Deepspeed log level consistent with the Trainer
ds_logger.setLevel(args.get_process_log_level())
if inference:
# only Z3 makes sense for the inference
if not hf_deepspeed_config.is_zero3():
raise ValueError("ZeRO inference only makes sense with ZeRO Stage 3 - please adjust your config")
# in case the training config is re-used for inference
hf_deepspeed_config.del_config_sub_tree("optimizer")
hf_deepspeed_config.del_config_sub_tree("lr_scheduler")
optimizer, lr_scheduler = None, None
model_parameters = None
else:
trainer.optimizer = None # important for when deepspeed_init is used as re-init
model_parameters = list(filter(lambda p: p.requires_grad, model.parameters()))
optimizer, lr_scheduler = deepspeed_optim_sched(
trainer, hf_deepspeed_config, args, num_training_steps, model_parameters
)
# keep for quick debug:
# from pprint import pprint; pprint(config)
return optimizer, lr_scheduler
def deepspeed_load_checkpoint(deepspeed_engine, checkpoint_path):
# it's possible that the user is trying to resume from model_path, which doesn't necessarily
# contain a deepspeed checkpoint. e.g. examples just check if the dir exists and assume it's
# a resume from a checkpoint and not just a local pretrained weight. So we check here if the
# path contains what looks like a deepspeed checkpoint
import glob
deepspeed_checkpoint_dirs = sorted(glob.glob(f"{checkpoint_path}/global_step*"))
if len(deepspeed_checkpoint_dirs) > 0:
logger.info(f"Attempting to resume from {checkpoint_path}")
# this magically updates self.optimizer and self.lr_scheduler
load_path, _ = deepspeed_engine.load_checkpoint(
checkpoint_path, load_optimizer_states=True, load_lr_scheduler_states=True
)
if load_path is None:
raise ValueError(f"[deepspeed] failed to resume from checkpoint {checkpoint_path}")
else:
raise ValueError(f"Can't find a valid checkpoint at {checkpoint_path}")