mart9992's picture
m
06ba6ce
raw
history blame
3.89 kB
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_torch_available():
import torch
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
logger = logging.get_logger(__name__)
@dataclass
class PyTorchBenchmarkArguments(BenchmarkArguments):
deprecated_args = [
"no_inference",
"no_cuda",
"no_tpu",
"no_speed",
"no_memory",
"no_env_print",
"no_multi_process",
]
def __init__(self, **kwargs):
"""
This __init__ is there for legacy code. When removing deprecated args completely, the class can simply be
deleted
"""
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
positive_arg = deprecated_arg[3:]
setattr(self, positive_arg, not kwargs.pop(deprecated_arg))
logger.warning(
f"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or"
f" {positive_arg}={kwargs[positive_arg]}"
)
self.torchscript = kwargs.pop("torchscript", self.torchscript)
self.torch_xla_tpu_print_metrics = kwargs.pop("torch_xla_tpu_print_metrics", self.torch_xla_tpu_print_metrics)
self.fp16_opt_level = kwargs.pop("fp16_opt_level", self.fp16_opt_level)
super().__init__(**kwargs)
torchscript: bool = field(default=False, metadata={"help": "Trace the models using torchscript"})
torch_xla_tpu_print_metrics: bool = field(default=False, metadata={"help": "Print Xla/PyTorch tpu metrics"})
fp16_opt_level: str = field(
default="O1",
metadata={
"help": (
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. "
"See details at https://nvidia.github.io/apex/amp.html"
)
},
)
@cached_property
def _setup_devices(self) -> Tuple["torch.device", int]:
requires_backends(self, ["torch"])
logger.info("PyTorch: setting up devices")
if not self.cuda:
device = torch.device("cpu")
n_gpu = 0
elif is_torch_tpu_available():
device = xm.xla_device()
n_gpu = 0
else:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
return device, n_gpu
@property
def is_tpu(self):
return is_torch_tpu_available() and self.tpu
@property
def device_idx(self) -> int:
requires_backends(self, ["torch"])
# TODO(PVP): currently only single GPU is supported
return torch.cuda.current_device()
@property
def device(self) -> "torch.device":
requires_backends(self, ["torch"])
return self._setup_devices[0]
@property
def n_gpu(self):
requires_backends(self, ["torch"])
return self._setup_devices[1]
@property
def is_gpu(self):
return self.n_gpu > 0