|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import io |
|
import json |
|
import os |
|
import warnings |
|
from pathlib import Path |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union |
|
|
|
from huggingface_hub import model_info |
|
from numpy import isin |
|
|
|
from ..configuration_utils import PretrainedConfig |
|
from ..dynamic_module_utils import get_class_from_dynamic_module |
|
from ..feature_extraction_utils import PreTrainedFeatureExtractor |
|
from ..image_processing_utils import BaseImageProcessor |
|
from ..models.auto.configuration_auto import AutoConfig |
|
from ..models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING, AutoFeatureExtractor |
|
from ..models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING, AutoImageProcessor |
|
from ..models.auto.modeling_auto import AutoModelForDepthEstimation, AutoModelForImageToImage |
|
from ..models.auto.tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer |
|
from ..tokenization_utils import PreTrainedTokenizer |
|
from ..utils import ( |
|
HUGGINGFACE_CO_RESOLVE_ENDPOINT, |
|
find_adapter_config_file, |
|
is_kenlm_available, |
|
is_offline_mode, |
|
is_peft_available, |
|
is_pyctcdecode_available, |
|
is_tf_available, |
|
is_torch_available, |
|
logging, |
|
) |
|
from .audio_classification import AudioClassificationPipeline |
|
from .automatic_speech_recognition import AutomaticSpeechRecognitionPipeline |
|
from .base import ( |
|
ArgumentHandler, |
|
CsvPipelineDataFormat, |
|
JsonPipelineDataFormat, |
|
PipedPipelineDataFormat, |
|
Pipeline, |
|
PipelineDataFormat, |
|
PipelineException, |
|
PipelineRegistry, |
|
get_default_model_and_revision, |
|
infer_framework_load_model, |
|
) |
|
from .conversational import Conversation, ConversationalPipeline |
|
from .depth_estimation import DepthEstimationPipeline |
|
from .document_question_answering import DocumentQuestionAnsweringPipeline |
|
from .feature_extraction import FeatureExtractionPipeline |
|
from .fill_mask import FillMaskPipeline |
|
from .image_classification import ImageClassificationPipeline |
|
from .image_segmentation import ImageSegmentationPipeline |
|
from .image_to_image import ImageToImagePipeline |
|
from .image_to_text import ImageToTextPipeline |
|
from .mask_generation import MaskGenerationPipeline |
|
from .object_detection import ObjectDetectionPipeline |
|
from .question_answering import QuestionAnsweringArgumentHandler, QuestionAnsweringPipeline |
|
from .table_question_answering import TableQuestionAnsweringArgumentHandler, TableQuestionAnsweringPipeline |
|
from .text2text_generation import SummarizationPipeline, Text2TextGenerationPipeline, TranslationPipeline |
|
from .text_classification import TextClassificationPipeline |
|
from .text_generation import TextGenerationPipeline |
|
from .text_to_audio import TextToAudioPipeline |
|
from .token_classification import ( |
|
AggregationStrategy, |
|
NerPipeline, |
|
TokenClassificationArgumentHandler, |
|
TokenClassificationPipeline, |
|
) |
|
from .video_classification import VideoClassificationPipeline |
|
from .visual_question_answering import VisualQuestionAnsweringPipeline |
|
from .zero_shot_audio_classification import ZeroShotAudioClassificationPipeline |
|
from .zero_shot_classification import ZeroShotClassificationArgumentHandler, ZeroShotClassificationPipeline |
|
from .zero_shot_image_classification import ZeroShotImageClassificationPipeline |
|
from .zero_shot_object_detection import ZeroShotObjectDetectionPipeline |
|
|
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
from ..models.auto.modeling_tf_auto import ( |
|
TFAutoModel, |
|
TFAutoModelForCausalLM, |
|
TFAutoModelForImageClassification, |
|
TFAutoModelForMaskedLM, |
|
TFAutoModelForQuestionAnswering, |
|
TFAutoModelForSeq2SeqLM, |
|
TFAutoModelForSequenceClassification, |
|
TFAutoModelForTableQuestionAnswering, |
|
TFAutoModelForTokenClassification, |
|
TFAutoModelForVision2Seq, |
|
TFAutoModelForZeroShotImageClassification, |
|
) |
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from ..models.auto.modeling_auto import ( |
|
AutoModel, |
|
AutoModelForAudioClassification, |
|
AutoModelForCausalLM, |
|
AutoModelForCTC, |
|
AutoModelForDocumentQuestionAnswering, |
|
AutoModelForImageClassification, |
|
AutoModelForImageSegmentation, |
|
AutoModelForMaskedLM, |
|
AutoModelForMaskGeneration, |
|
AutoModelForObjectDetection, |
|
AutoModelForQuestionAnswering, |
|
AutoModelForSemanticSegmentation, |
|
AutoModelForSeq2SeqLM, |
|
AutoModelForSequenceClassification, |
|
AutoModelForSpeechSeq2Seq, |
|
AutoModelForTableQuestionAnswering, |
|
AutoModelForTextToSpectrogram, |
|
AutoModelForTextToWaveform, |
|
AutoModelForTokenClassification, |
|
AutoModelForVideoClassification, |
|
AutoModelForVision2Seq, |
|
AutoModelForVisualQuestionAnswering, |
|
AutoModelForZeroShotImageClassification, |
|
AutoModelForZeroShotObjectDetection, |
|
) |
|
|
|
|
|
if TYPE_CHECKING: |
|
from ..modeling_tf_utils import TFPreTrainedModel |
|
from ..modeling_utils import PreTrainedModel |
|
from ..tokenization_utils_fast import PreTrainedTokenizerFast |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
TASK_ALIASES = { |
|
"sentiment-analysis": "text-classification", |
|
"ner": "token-classification", |
|
"vqa": "visual-question-answering", |
|
"text-to-speech": "text-to-audio", |
|
} |
|
SUPPORTED_TASKS = { |
|
"audio-classification": { |
|
"impl": AudioClassificationPipeline, |
|
"tf": (), |
|
"pt": (AutoModelForAudioClassification,) if is_torch_available() else (), |
|
"default": {"model": {"pt": ("superb/wav2vec2-base-superb-ks", "372e048")}}, |
|
"type": "audio", |
|
}, |
|
"automatic-speech-recognition": { |
|
"impl": AutomaticSpeechRecognitionPipeline, |
|
"tf": (), |
|
"pt": (AutoModelForCTC, AutoModelForSpeechSeq2Seq) if is_torch_available() else (), |
|
"default": {"model": {"pt": ("facebook/wav2vec2-base-960h", "55bb623")}}, |
|
"type": "multimodal", |
|
}, |
|
"text-to-audio": { |
|
"impl": TextToAudioPipeline, |
|
"tf": (), |
|
"pt": (AutoModelForTextToWaveform, AutoModelForTextToSpectrogram) if is_torch_available() else (), |
|
"default": {"model": {"pt": ("suno/bark-small", "645cfba")}}, |
|
"type": "text", |
|
}, |
|
"feature-extraction": { |
|
"impl": FeatureExtractionPipeline, |
|
"tf": (TFAutoModel,) if is_tf_available() else (), |
|
"pt": (AutoModel,) if is_torch_available() else (), |
|
"default": {"model": {"pt": ("distilbert-base-cased", "935ac13"), "tf": ("distilbert-base-cased", "935ac13")}}, |
|
"type": "multimodal", |
|
}, |
|
"text-classification": { |
|
"impl": TextClassificationPipeline, |
|
"tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (), |
|
"pt": (AutoModelForSequenceClassification,) if is_torch_available() else (), |
|
"default": { |
|
"model": { |
|
"pt": ("distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"), |
|
"tf": ("distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"), |
|
}, |
|
}, |
|
"type": "text", |
|
}, |
|
"token-classification": { |
|
"impl": TokenClassificationPipeline, |
|
"tf": (TFAutoModelForTokenClassification,) if is_tf_available() else (), |
|
"pt": (AutoModelForTokenClassification,) if is_torch_available() else (), |
|
"default": { |
|
"model": { |
|
"pt": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"), |
|
"tf": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"), |
|
}, |
|
}, |
|
"type": "text", |
|
}, |
|
"question-answering": { |
|
"impl": QuestionAnsweringPipeline, |
|
"tf": (TFAutoModelForQuestionAnswering,) if is_tf_available() else (), |
|
"pt": (AutoModelForQuestionAnswering,) if is_torch_available() else (), |
|
"default": { |
|
"model": { |
|
"pt": ("distilbert-base-cased-distilled-squad", "626af31"), |
|
"tf": ("distilbert-base-cased-distilled-squad", "626af31"), |
|
}, |
|
}, |
|
"type": "text", |
|
}, |
|
"table-question-answering": { |
|
"impl": TableQuestionAnsweringPipeline, |
|
"pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (), |
|
"tf": (TFAutoModelForTableQuestionAnswering,) if is_tf_available() else (), |
|
"default": { |
|
"model": { |
|
"pt": ("google/tapas-base-finetuned-wtq", "69ceee2"), |
|
"tf": ("google/tapas-base-finetuned-wtq", "69ceee2"), |
|
}, |
|
}, |
|
"type": "text", |
|
}, |
|
"visual-question-answering": { |
|
"impl": VisualQuestionAnsweringPipeline, |
|
"pt": (AutoModelForVisualQuestionAnswering,) if is_torch_available() else (), |
|
"tf": (), |
|
"default": { |
|
"model": {"pt": ("dandelin/vilt-b32-finetuned-vqa", "4355f59")}, |
|
}, |
|
"type": "multimodal", |
|
}, |
|
"document-question-answering": { |
|
"impl": DocumentQuestionAnsweringPipeline, |
|
"pt": (AutoModelForDocumentQuestionAnswering,) if is_torch_available() else (), |
|
"tf": (), |
|
"default": { |
|
"model": {"pt": ("impira/layoutlm-document-qa", "52e01b3")}, |
|
}, |
|
"type": "multimodal", |
|
}, |
|
"fill-mask": { |
|
"impl": FillMaskPipeline, |
|
"tf": (TFAutoModelForMaskedLM,) if is_tf_available() else (), |
|
"pt": (AutoModelForMaskedLM,) if is_torch_available() else (), |
|
"default": {"model": {"pt": ("distilroberta-base", "ec58a5b"), "tf": ("distilroberta-base", "ec58a5b")}}, |
|
"type": "text", |
|
}, |
|
"summarization": { |
|
"impl": SummarizationPipeline, |
|
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (), |
|
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (), |
|
"default": {"model": {"pt": ("sshleifer/distilbart-cnn-12-6", "a4f8f3e"), "tf": ("t5-small", "d769bba")}}, |
|
"type": "text", |
|
}, |
|
|
|
"translation": { |
|
"impl": TranslationPipeline, |
|
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (), |
|
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (), |
|
"default": { |
|
("en", "fr"): {"model": {"pt": ("t5-base", "686f1db"), "tf": ("t5-base", "686f1db")}}, |
|
("en", "de"): {"model": {"pt": ("t5-base", "686f1db"), "tf": ("t5-base", "686f1db")}}, |
|
("en", "ro"): {"model": {"pt": ("t5-base", "686f1db"), "tf": ("t5-base", "686f1db")}}, |
|
}, |
|
"type": "text", |
|
}, |
|
"text2text-generation": { |
|
"impl": Text2TextGenerationPipeline, |
|
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (), |
|
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (), |
|
"default": {"model": {"pt": ("t5-base", "686f1db"), "tf": ("t5-base", "686f1db")}}, |
|
"type": "text", |
|
}, |
|
"text-generation": { |
|
"impl": TextGenerationPipeline, |
|
"tf": (TFAutoModelForCausalLM,) if is_tf_available() else (), |
|
"pt": (AutoModelForCausalLM,) if is_torch_available() else (), |
|
"default": {"model": {"pt": ("gpt2", "6c0e608"), "tf": ("gpt2", "6c0e608")}}, |
|
"type": "text", |
|
}, |
|
"zero-shot-classification": { |
|
"impl": ZeroShotClassificationPipeline, |
|
"tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (), |
|
"pt": (AutoModelForSequenceClassification,) if is_torch_available() else (), |
|
"default": { |
|
"model": {"pt": ("facebook/bart-large-mnli", "c626438"), "tf": ("roberta-large-mnli", "130fb28")}, |
|
"config": {"pt": ("facebook/bart-large-mnli", "c626438"), "tf": ("roberta-large-mnli", "130fb28")}, |
|
}, |
|
"type": "text", |
|
}, |
|
"zero-shot-image-classification": { |
|
"impl": ZeroShotImageClassificationPipeline, |
|
"tf": (TFAutoModelForZeroShotImageClassification,) if is_tf_available() else (), |
|
"pt": (AutoModelForZeroShotImageClassification,) if is_torch_available() else (), |
|
"default": { |
|
"model": { |
|
"pt": ("openai/clip-vit-base-patch32", "f4881ba"), |
|
"tf": ("openai/clip-vit-base-patch32", "f4881ba"), |
|
} |
|
}, |
|
"type": "multimodal", |
|
}, |
|
"zero-shot-audio-classification": { |
|
"impl": ZeroShotAudioClassificationPipeline, |
|
"tf": (), |
|
"pt": (AutoModel,) if is_torch_available() else (), |
|
"default": { |
|
"model": { |
|
"pt": ("laion/clap-htsat-fused", "973b6e5"), |
|
} |
|
}, |
|
"type": "multimodal", |
|
}, |
|
"conversational": { |
|
"impl": ConversationalPipeline, |
|
"tf": (TFAutoModelForSeq2SeqLM, TFAutoModelForCausalLM) if is_tf_available() else (), |
|
"pt": (AutoModelForSeq2SeqLM, AutoModelForCausalLM) if is_torch_available() else (), |
|
"default": { |
|
"model": {"pt": ("microsoft/DialoGPT-medium", "8bada3b"), "tf": ("microsoft/DialoGPT-medium", "8bada3b")} |
|
}, |
|
"type": "text", |
|
}, |
|
"image-classification": { |
|
"impl": ImageClassificationPipeline, |
|
"tf": (TFAutoModelForImageClassification,) if is_tf_available() else (), |
|
"pt": (AutoModelForImageClassification,) if is_torch_available() else (), |
|
"default": { |
|
"model": { |
|
"pt": ("google/vit-base-patch16-224", "5dca96d"), |
|
"tf": ("google/vit-base-patch16-224", "5dca96d"), |
|
} |
|
}, |
|
"type": "image", |
|
}, |
|
"image-segmentation": { |
|
"impl": ImageSegmentationPipeline, |
|
"tf": (), |
|
"pt": (AutoModelForImageSegmentation, AutoModelForSemanticSegmentation) if is_torch_available() else (), |
|
"default": {"model": {"pt": ("facebook/detr-resnet-50-panoptic", "fc15262")}}, |
|
"type": "multimodal", |
|
}, |
|
"image-to-text": { |
|
"impl": ImageToTextPipeline, |
|
"tf": (TFAutoModelForVision2Seq,) if is_tf_available() else (), |
|
"pt": (AutoModelForVision2Seq,) if is_torch_available() else (), |
|
"default": { |
|
"model": { |
|
"pt": ("ydshieh/vit-gpt2-coco-en", "65636df"), |
|
"tf": ("ydshieh/vit-gpt2-coco-en", "65636df"), |
|
} |
|
}, |
|
"type": "multimodal", |
|
}, |
|
"object-detection": { |
|
"impl": ObjectDetectionPipeline, |
|
"tf": (), |
|
"pt": (AutoModelForObjectDetection,) if is_torch_available() else (), |
|
"default": {"model": {"pt": ("facebook/detr-resnet-50", "2729413")}}, |
|
"type": "multimodal", |
|
}, |
|
"zero-shot-object-detection": { |
|
"impl": ZeroShotObjectDetectionPipeline, |
|
"tf": (), |
|
"pt": (AutoModelForZeroShotObjectDetection,) if is_torch_available() else (), |
|
"default": {"model": {"pt": ("google/owlvit-base-patch32", "17740e1")}}, |
|
"type": "multimodal", |
|
}, |
|
"depth-estimation": { |
|
"impl": DepthEstimationPipeline, |
|
"tf": (), |
|
"pt": (AutoModelForDepthEstimation,) if is_torch_available() else (), |
|
"default": {"model": {"pt": ("Intel/dpt-large", "e93beec")}}, |
|
"type": "image", |
|
}, |
|
"video-classification": { |
|
"impl": VideoClassificationPipeline, |
|
"tf": (), |
|
"pt": (AutoModelForVideoClassification,) if is_torch_available() else (), |
|
"default": {"model": {"pt": ("MCG-NJU/videomae-base-finetuned-kinetics", "4800870")}}, |
|
"type": "video", |
|
}, |
|
"mask-generation": { |
|
"impl": MaskGenerationPipeline, |
|
"tf": (), |
|
"pt": (AutoModelForMaskGeneration,) if is_torch_available() else (), |
|
"default": {"model": {"pt": ("facebook/sam-vit-huge", "997b15")}}, |
|
"type": "multimodal", |
|
}, |
|
"image-to-image": { |
|
"impl": ImageToImagePipeline, |
|
"tf": (), |
|
"pt": (AutoModelForImageToImage,) if is_torch_available() else (), |
|
"default": {"model": {"pt": ("caidas/swin2SR-classical-sr-x2-64", "4aaedcb")}}, |
|
"type": "image", |
|
}, |
|
} |
|
|
|
NO_FEATURE_EXTRACTOR_TASKS = set() |
|
NO_IMAGE_PROCESSOR_TASKS = set() |
|
NO_TOKENIZER_TASKS = set() |
|
|
|
|
|
|
|
|
|
|
|
MULTI_MODEL_CONFIGS = {"SpeechEncoderDecoderConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig"} |
|
for task, values in SUPPORTED_TASKS.items(): |
|
if values["type"] == "text": |
|
NO_FEATURE_EXTRACTOR_TASKS.add(task) |
|
NO_IMAGE_PROCESSOR_TASKS.add(task) |
|
elif values["type"] in {"image", "video"}: |
|
NO_TOKENIZER_TASKS.add(task) |
|
elif values["type"] in {"audio"}: |
|
NO_TOKENIZER_TASKS.add(task) |
|
NO_IMAGE_PROCESSOR_TASKS.add(task) |
|
elif values["type"] != "multimodal": |
|
raise ValueError(f"SUPPORTED_TASK {task} contains invalid type {values['type']}") |
|
|
|
PIPELINE_REGISTRY = PipelineRegistry(supported_tasks=SUPPORTED_TASKS, task_aliases=TASK_ALIASES) |
|
|
|
|
|
def get_supported_tasks() -> List[str]: |
|
""" |
|
Returns a list of supported task strings. |
|
""" |
|
return PIPELINE_REGISTRY.get_supported_tasks() |
|
|
|
|
|
def get_task(model: str, token: Optional[str] = None, **deprecated_kwargs) -> str: |
|
use_auth_token = deprecated_kwargs.pop("use_auth_token", None) |
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") |
|
token = use_auth_token |
|
|
|
if is_offline_mode(): |
|
raise RuntimeError("You cannot infer task automatically within `pipeline` when using offline mode") |
|
try: |
|
info = model_info(model, token=token) |
|
except Exception as e: |
|
raise RuntimeError(f"Instantiating a pipeline without a task set raised an error: {e}") |
|
if not info.pipeline_tag: |
|
raise RuntimeError( |
|
f"The model {model} does not seem to have a correct `pipeline_tag` set to infer the task automatically" |
|
) |
|
if getattr(info, "library_name", "transformers") != "transformers": |
|
raise RuntimeError(f"This model is meant to be used with {info.library_name} not with transformers") |
|
task = info.pipeline_tag |
|
return task |
|
|
|
|
|
def check_task(task: str) -> Tuple[str, Dict, Any]: |
|
""" |
|
Checks an incoming task string, to validate it's correct and return the default Pipeline and Model classes, and |
|
default models if they exist. |
|
|
|
Args: |
|
task (`str`): |
|
The task defining which pipeline will be returned. Currently accepted tasks are: |
|
|
|
- `"audio-classification"` |
|
- `"automatic-speech-recognition"` |
|
- `"conversational"` |
|
- `"depth-estimation"` |
|
- `"document-question-answering"` |
|
- `"feature-extraction"` |
|
- `"fill-mask"` |
|
- `"image-classification"` |
|
- `"image-segmentation"` |
|
- `"image-to-text"` |
|
- `"image-to-image"` |
|
- `"object-detection"` |
|
- `"question-answering"` |
|
- `"summarization"` |
|
- `"table-question-answering"` |
|
- `"text2text-generation"` |
|
- `"text-classification"` (alias `"sentiment-analysis"` available) |
|
- `"text-generation"` |
|
- `"text-to-audio"` (alias `"text-to-speech"` available) |
|
- `"token-classification"` (alias `"ner"` available) |
|
- `"translation"` |
|
- `"translation_xx_to_yy"` |
|
- `"video-classification"` |
|
- `"visual-question-answering"` |
|
- `"zero-shot-classification"` |
|
- `"zero-shot-image-classification"` |
|
- `"zero-shot-object-detection"` |
|
|
|
Returns: |
|
(normalized_task: `str`, task_defaults: `dict`, task_options: (`tuple`, None)) The normalized task name |
|
(removed alias and options). The actual dictionary required to initialize the pipeline and some extra task |
|
options for parametrized tasks like "translation_XX_to_YY" |
|
|
|
|
|
""" |
|
return PIPELINE_REGISTRY.check_task(task) |
|
|
|
|
|
def clean_custom_task(task_info): |
|
import transformers |
|
|
|
if "impl" not in task_info: |
|
raise RuntimeError("This model introduces a custom pipeline without specifying its implementation.") |
|
pt_class_names = task_info.get("pt", ()) |
|
if isinstance(pt_class_names, str): |
|
pt_class_names = [pt_class_names] |
|
task_info["pt"] = tuple(getattr(transformers, c) for c in pt_class_names) |
|
tf_class_names = task_info.get("tf", ()) |
|
if isinstance(tf_class_names, str): |
|
tf_class_names = [tf_class_names] |
|
task_info["tf"] = tuple(getattr(transformers, c) for c in tf_class_names) |
|
return task_info, None |
|
|
|
|
|
def pipeline( |
|
task: str = None, |
|
model: Optional[Union[str, "PreTrainedModel", "TFPreTrainedModel"]] = None, |
|
config: Optional[Union[str, PretrainedConfig]] = None, |
|
tokenizer: Optional[Union[str, PreTrainedTokenizer, "PreTrainedTokenizerFast"]] = None, |
|
feature_extractor: Optional[Union[str, PreTrainedFeatureExtractor]] = None, |
|
image_processor: Optional[Union[str, BaseImageProcessor]] = None, |
|
framework: Optional[str] = None, |
|
revision: Optional[str] = None, |
|
use_fast: bool = True, |
|
token: Optional[Union[str, bool]] = None, |
|
device: Optional[Union[int, str, "torch.device"]] = None, |
|
device_map=None, |
|
torch_dtype=None, |
|
trust_remote_code: Optional[bool] = None, |
|
model_kwargs: Dict[str, Any] = None, |
|
pipeline_class: Optional[Any] = None, |
|
**kwargs, |
|
) -> Pipeline: |
|
""" |
|
Utility factory method to build a [`Pipeline`]. |
|
|
|
Pipelines are made of: |
|
|
|
- A [tokenizer](tokenizer) in charge of mapping raw textual input to token. |
|
- A [model](model) to make predictions from the inputs. |
|
- Some (optional) post processing for enhancing model's output. |
|
|
|
Args: |
|
task (`str`): |
|
The task defining which pipeline will be returned. Currently accepted tasks are: |
|
|
|
- `"audio-classification"`: will return a [`AudioClassificationPipeline`]. |
|
- `"automatic-speech-recognition"`: will return a [`AutomaticSpeechRecognitionPipeline`]. |
|
- `"conversational"`: will return a [`ConversationalPipeline`]. |
|
- `"depth-estimation"`: will return a [`DepthEstimationPipeline`]. |
|
- `"document-question-answering"`: will return a [`DocumentQuestionAnsweringPipeline`]. |
|
- `"feature-extraction"`: will return a [`FeatureExtractionPipeline`]. |
|
- `"fill-mask"`: will return a [`FillMaskPipeline`]:. |
|
- `"image-classification"`: will return a [`ImageClassificationPipeline`]. |
|
- `"image-segmentation"`: will return a [`ImageSegmentationPipeline`]. |
|
- `"image-to-image"`: will return a [`ImageToImagePipeline`]. |
|
- `"image-to-text"`: will return a [`ImageToTextPipeline`]. |
|
- `"mask-generation"`: will return a [`MaskGenerationPipeline`]. |
|
- `"object-detection"`: will return a [`ObjectDetectionPipeline`]. |
|
- `"question-answering"`: will return a [`QuestionAnsweringPipeline`]. |
|
- `"summarization"`: will return a [`SummarizationPipeline`]. |
|
- `"table-question-answering"`: will return a [`TableQuestionAnsweringPipeline`]. |
|
- `"text2text-generation"`: will return a [`Text2TextGenerationPipeline`]. |
|
- `"text-classification"` (alias `"sentiment-analysis"` available): will return a |
|
[`TextClassificationPipeline`]. |
|
- `"text-generation"`: will return a [`TextGenerationPipeline`]:. |
|
- `"text-to-audio"` (alias `"text-to-speech"` available): will return a [`TextToAudioPipeline`]:. |
|
- `"token-classification"` (alias `"ner"` available): will return a [`TokenClassificationPipeline`]. |
|
- `"translation"`: will return a [`TranslationPipeline`]. |
|
- `"translation_xx_to_yy"`: will return a [`TranslationPipeline`]. |
|
- `"video-classification"`: will return a [`VideoClassificationPipeline`]. |
|
- `"visual-question-answering"`: will return a [`VisualQuestionAnsweringPipeline`]. |
|
- `"zero-shot-classification"`: will return a [`ZeroShotClassificationPipeline`]. |
|
- `"zero-shot-image-classification"`: will return a [`ZeroShotImageClassificationPipeline`]. |
|
- `"zero-shot-audio-classification"`: will return a [`ZeroShotAudioClassificationPipeline`]. |
|
- `"zero-shot-object-detection"`: will return a [`ZeroShotObjectDetectionPipeline`]. |
|
|
|
model (`str` or [`PreTrainedModel`] or [`TFPreTrainedModel`], *optional*): |
|
The model that will be used by the pipeline to make predictions. This can be a model identifier or an |
|
actual instance of a pretrained model inheriting from [`PreTrainedModel`] (for PyTorch) or |
|
[`TFPreTrainedModel`] (for TensorFlow). |
|
|
|
If not provided, the default for the `task` will be loaded. |
|
config (`str` or [`PretrainedConfig`], *optional*): |
|
The configuration that will be used by the pipeline to instantiate the model. This can be a model |
|
identifier or an actual pretrained model configuration inheriting from [`PretrainedConfig`]. |
|
|
|
If not provided, the default configuration file for the requested model will be used. That means that if |
|
`model` is given, its default configuration will be used. However, if `model` is not supplied, this |
|
`task`'s default model's config is used instead. |
|
tokenizer (`str` or [`PreTrainedTokenizer`], *optional*): |
|
The tokenizer that will be used by the pipeline to encode data for the model. This can be a model |
|
identifier or an actual pretrained tokenizer inheriting from [`PreTrainedTokenizer`]. |
|
|
|
If not provided, the default tokenizer for the given `model` will be loaded (if it is a string). If `model` |
|
is not specified or not a string, then the default tokenizer for `config` is loaded (if it is a string). |
|
However, if `config` is also not given or not a string, then the default tokenizer for the given `task` |
|
will be loaded. |
|
feature_extractor (`str` or [`PreTrainedFeatureExtractor`], *optional*): |
|
The feature extractor that will be used by the pipeline to encode data for the model. This can be a model |
|
identifier or an actual pretrained feature extractor inheriting from [`PreTrainedFeatureExtractor`]. |
|
|
|
Feature extractors are used for non-NLP models, such as Speech or Vision models as well as multi-modal |
|
models. Multi-modal models will also require a tokenizer to be passed. |
|
|
|
If not provided, the default feature extractor for the given `model` will be loaded (if it is a string). If |
|
`model` is not specified or not a string, then the default feature extractor for `config` is loaded (if it |
|
is a string). However, if `config` is also not given or not a string, then the default feature extractor |
|
for the given `task` will be loaded. |
|
framework (`str`, *optional*): |
|
The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be |
|
installed. |
|
|
|
If no framework is specified, will default to the one currently installed. If no framework is specified and |
|
both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is |
|
provided. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
When passing a task name or a string model identifier: The specific model version to use. It can be a |
|
branch name, a tag name, or a commit id, since we use a git-based system for storing models and other |
|
artifacts on huggingface.co, so `revision` can be any identifier allowed by git. |
|
use_fast (`bool`, *optional*, defaults to `True`): |
|
Whether or not to use a Fast tokenizer if possible (a [`PreTrainedTokenizerFast`]). |
|
use_auth_token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `huggingface-cli login` (stored in `~/.huggingface`). |
|
device (`int` or `str` or `torch.device`): |
|
Defines the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank like `1`) on which this |
|
pipeline will be allocated. |
|
device_map (`str` or `Dict[str, Union[int, str, torch.device]`, *optional*): |
|
Sent directly as `model_kwargs` (just a simpler shortcut). When `accelerate` library is present, set |
|
`device_map="auto"` to compute the most optimized `device_map` automatically (see |
|
[here](https://huggingface.co/docs/accelerate/main/en/package_reference/big_modeling#accelerate.cpu_offload) |
|
for more information). |
|
|
|
<Tip warning={true}> |
|
|
|
Do not use `device_map` AND `device` at the same time as they will conflict |
|
|
|
</Tip> |
|
|
|
torch_dtype (`str` or `torch.dtype`, *optional*): |
|
Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model |
|
(`torch.float16`, `torch.bfloat16`, ... or `"auto"`). |
|
trust_remote_code (`bool`, *optional*, defaults to `False`): |
|
Whether or not to allow for custom code defined on the Hub in their own modeling, configuration, |
|
tokenization or even pipeline files. This option should only be set to `True` for repositories you trust |
|
and in which you have read the code, as it will execute code present on the Hub on your local machine. |
|
model_kwargs (`Dict[str, Any]`, *optional*): |
|
Additional dictionary of keyword arguments passed along to the model's `from_pretrained(..., |
|
**model_kwargs)` function. |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
Additional keyword arguments passed along to the specific pipeline init (see the documentation for the |
|
corresponding pipeline class for possible values). |
|
|
|
Returns: |
|
[`Pipeline`]: A suitable pipeline for the task. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer |
|
|
|
>>> # Sentiment analysis pipeline |
|
>>> analyzer = pipeline("sentiment-analysis") |
|
|
|
>>> # Question answering pipeline, specifying the checkpoint identifier |
|
>>> oracle = pipeline( |
|
... "question-answering", model="distilbert-base-cased-distilled-squad", tokenizer="bert-base-cased" |
|
... ) |
|
|
|
>>> # Named entity recognition pipeline, passing in a specific model and tokenizer |
|
>>> model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") |
|
>>> recognizer = pipeline("ner", model=model, tokenizer=tokenizer) |
|
```""" |
|
if model_kwargs is None: |
|
model_kwargs = {} |
|
|
|
|
|
use_auth_token = model_kwargs.pop("use_auth_token", None) |
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") |
|
token = use_auth_token |
|
|
|
hub_kwargs = { |
|
"revision": revision, |
|
"token": token, |
|
"trust_remote_code": trust_remote_code, |
|
"_commit_hash": None, |
|
} |
|
|
|
if task is None and model is None: |
|
raise RuntimeError( |
|
"Impossible to instantiate a pipeline without either a task or a model " |
|
"being specified. " |
|
"Please provide a task class or a model" |
|
) |
|
|
|
if model is None and tokenizer is not None: |
|
raise RuntimeError( |
|
"Impossible to instantiate a pipeline with tokenizer specified but not the model as the provided tokenizer" |
|
" may not be compatible with the default model. Please provide a PreTrainedModel class or a" |
|
" path/identifier to a pretrained model when providing tokenizer." |
|
) |
|
if model is None and feature_extractor is not None: |
|
raise RuntimeError( |
|
"Impossible to instantiate a pipeline with feature_extractor specified but not the model as the provided" |
|
" feature_extractor may not be compatible with the default model. Please provide a PreTrainedModel class" |
|
" or a path/identifier to a pretrained model when providing feature_extractor." |
|
) |
|
if isinstance(model, Path): |
|
model = str(model) |
|
|
|
|
|
|
|
if isinstance(config, str): |
|
config = AutoConfig.from_pretrained(config, _from_pipeline=task, **hub_kwargs, **model_kwargs) |
|
hub_kwargs["_commit_hash"] = config._commit_hash |
|
elif config is None and isinstance(model, str): |
|
|
|
if is_peft_available(): |
|
subfolder = hub_kwargs.get("subfolder", None) |
|
maybe_adapter_path = find_adapter_config_file( |
|
model, |
|
revision=revision, |
|
token=use_auth_token, |
|
subfolder=subfolder, |
|
) |
|
|
|
if maybe_adapter_path is not None: |
|
with open(maybe_adapter_path, "r", encoding="utf-8") as f: |
|
adapter_config = json.load(f) |
|
model = adapter_config["base_model_name_or_path"] |
|
|
|
config = AutoConfig.from_pretrained(model, _from_pipeline=task, **hub_kwargs, **model_kwargs) |
|
hub_kwargs["_commit_hash"] = config._commit_hash |
|
|
|
custom_tasks = {} |
|
if config is not None and len(getattr(config, "custom_pipelines", {})) > 0: |
|
custom_tasks = config.custom_pipelines |
|
if task is None and trust_remote_code is not False: |
|
if len(custom_tasks) == 1: |
|
task = list(custom_tasks.keys())[0] |
|
else: |
|
raise RuntimeError( |
|
"We can't infer the task automatically for this model as there are multiple tasks available. Pick " |
|
f"one in {', '.join(custom_tasks.keys())}" |
|
) |
|
|
|
if task is None and model is not None: |
|
if not isinstance(model, str): |
|
raise RuntimeError( |
|
"Inferring the task automatically requires to check the hub with a model_id defined as a `str`." |
|
f"{model} is not a valid model_id." |
|
) |
|
task = get_task(model, use_auth_token) |
|
|
|
|
|
if task in custom_tasks: |
|
normalized_task = task |
|
targeted_task, task_options = clean_custom_task(custom_tasks[task]) |
|
if pipeline_class is None: |
|
if not trust_remote_code: |
|
raise ValueError( |
|
"Loading this pipeline requires you to execute the code in the pipeline file in that" |
|
" repo on your local machine. Make sure you have read the code there to avoid malicious use, then" |
|
" set the option `trust_remote_code=True` to remove this error." |
|
) |
|
class_ref = targeted_task["impl"] |
|
pipeline_class = get_class_from_dynamic_module( |
|
class_ref, model, revision=revision, use_auth_token=use_auth_token |
|
) |
|
else: |
|
normalized_task, targeted_task, task_options = check_task(task) |
|
if pipeline_class is None: |
|
pipeline_class = targeted_task["impl"] |
|
|
|
|
|
if model is None: |
|
|
|
model, default_revision = get_default_model_and_revision(targeted_task, framework, task_options) |
|
revision = revision if revision is not None else default_revision |
|
logger.warning( |
|
f"No model was supplied, defaulted to {model} and revision" |
|
f" {revision} ({HUGGINGFACE_CO_RESOLVE_ENDPOINT}/{model}).\n" |
|
"Using a pipeline without specifying a model name and revision in production is not recommended." |
|
) |
|
if config is None and isinstance(model, str): |
|
config = AutoConfig.from_pretrained(model, _from_pipeline=task, **hub_kwargs, **model_kwargs) |
|
hub_kwargs["_commit_hash"] = config._commit_hash |
|
|
|
if device_map is not None: |
|
if "device_map" in model_kwargs: |
|
raise ValueError( |
|
'You cannot use both `pipeline(... device_map=..., model_kwargs={"device_map":...})` as those' |
|
" arguments might conflict, use only one.)" |
|
) |
|
if device is not None: |
|
logger.warning( |
|
"Both `device` and `device_map` are specified. `device` will override `device_map`. You" |
|
" will most likely encounter unexpected behavior. Please remove `device` and keep `device_map`." |
|
) |
|
model_kwargs["device_map"] = device_map |
|
if torch_dtype is not None: |
|
if "torch_dtype" in model_kwargs: |
|
raise ValueError( |
|
'You cannot use both `pipeline(... torch_dtype=..., model_kwargs={"torch_dtype":...})` as those' |
|
" arguments might conflict, use only one.)" |
|
) |
|
model_kwargs["torch_dtype"] = torch_dtype |
|
|
|
model_name = model if isinstance(model, str) else None |
|
|
|
|
|
|
|
if isinstance(model, str) or framework is None: |
|
model_classes = {"tf": targeted_task["tf"], "pt": targeted_task["pt"]} |
|
framework, model = infer_framework_load_model( |
|
model, |
|
model_classes=model_classes, |
|
config=config, |
|
framework=framework, |
|
task=task, |
|
**hub_kwargs, |
|
**model_kwargs, |
|
) |
|
|
|
model_config = model.config |
|
hub_kwargs["_commit_hash"] = model.config._commit_hash |
|
load_tokenizer = type(model_config) in TOKENIZER_MAPPING or model_config.tokenizer_class is not None |
|
load_feature_extractor = type(model_config) in FEATURE_EXTRACTOR_MAPPING or feature_extractor is not None |
|
load_image_processor = type(model_config) in IMAGE_PROCESSOR_MAPPING or image_processor is not None |
|
|
|
|
|
|
|
|
|
|
|
|
|
if load_image_processor and load_feature_extractor: |
|
load_feature_extractor = False |
|
|
|
if ( |
|
tokenizer is None |
|
and not load_tokenizer |
|
and normalized_task not in NO_TOKENIZER_TASKS |
|
|
|
and model_config.__class__.__name__ in MULTI_MODEL_CONFIGS |
|
): |
|
|
|
|
|
|
|
load_tokenizer = True |
|
if ( |
|
image_processor is None |
|
and not load_image_processor |
|
and normalized_task not in NO_IMAGE_PROCESSOR_TASKS |
|
|
|
and model_config.__class__.__name__ in MULTI_MODEL_CONFIGS |
|
and normalized_task != "automatic-speech-recognition" |
|
): |
|
|
|
|
|
|
|
load_image_processor = True |
|
if ( |
|
feature_extractor is None |
|
and not load_feature_extractor |
|
and normalized_task not in NO_FEATURE_EXTRACTOR_TASKS |
|
|
|
and model_config.__class__.__name__ in MULTI_MODEL_CONFIGS |
|
): |
|
|
|
|
|
|
|
load_feature_extractor = True |
|
|
|
if task in NO_TOKENIZER_TASKS: |
|
|
|
|
|
|
|
|
|
load_tokenizer = False |
|
|
|
if task in NO_FEATURE_EXTRACTOR_TASKS: |
|
load_feature_extractor = False |
|
if task in NO_IMAGE_PROCESSOR_TASKS: |
|
load_image_processor = False |
|
|
|
if load_tokenizer: |
|
|
|
if tokenizer is None: |
|
if isinstance(model_name, str): |
|
tokenizer = model_name |
|
elif isinstance(config, str): |
|
tokenizer = config |
|
else: |
|
|
|
raise Exception( |
|
"Impossible to guess which tokenizer to use. " |
|
"Please provide a PreTrainedTokenizer class or a path/identifier to a pretrained tokenizer." |
|
) |
|
|
|
|
|
if isinstance(tokenizer, (str, tuple)): |
|
if isinstance(tokenizer, tuple): |
|
|
|
use_fast = tokenizer[1].pop("use_fast", use_fast) |
|
tokenizer_identifier = tokenizer[0] |
|
tokenizer_kwargs = tokenizer[1] |
|
else: |
|
tokenizer_identifier = tokenizer |
|
tokenizer_kwargs = model_kwargs.copy() |
|
tokenizer_kwargs.pop("torch_dtype", None) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
tokenizer_identifier, use_fast=use_fast, _from_pipeline=task, **hub_kwargs, **tokenizer_kwargs |
|
) |
|
|
|
if load_image_processor: |
|
|
|
if image_processor is None: |
|
if isinstance(model_name, str): |
|
image_processor = model_name |
|
elif isinstance(config, str): |
|
image_processor = config |
|
|
|
|
|
elif feature_extractor is not None and isinstance(feature_extractor, BaseImageProcessor): |
|
image_processor = feature_extractor |
|
else: |
|
|
|
raise Exception( |
|
"Impossible to guess which image processor to use. " |
|
"Please provide a PreTrainedImageProcessor class or a path/identifier " |
|
"to a pretrained image processor." |
|
) |
|
|
|
|
|
if isinstance(image_processor, (str, tuple)): |
|
image_processor = AutoImageProcessor.from_pretrained( |
|
image_processor, _from_pipeline=task, **hub_kwargs, **model_kwargs |
|
) |
|
|
|
if load_feature_extractor: |
|
|
|
if feature_extractor is None: |
|
if isinstance(model_name, str): |
|
feature_extractor = model_name |
|
elif isinstance(config, str): |
|
feature_extractor = config |
|
else: |
|
|
|
raise Exception( |
|
"Impossible to guess which feature extractor to use. " |
|
"Please provide a PreTrainedFeatureExtractor class or a path/identifier " |
|
"to a pretrained feature extractor." |
|
) |
|
|
|
|
|
if isinstance(feature_extractor, (str, tuple)): |
|
feature_extractor = AutoFeatureExtractor.from_pretrained( |
|
feature_extractor, _from_pipeline=task, **hub_kwargs, **model_kwargs |
|
) |
|
|
|
if ( |
|
feature_extractor._processor_class |
|
and feature_extractor._processor_class.endswith("WithLM") |
|
and isinstance(model_name, str) |
|
): |
|
try: |
|
import kenlm |
|
from pyctcdecode import BeamSearchDecoderCTC |
|
|
|
if os.path.isdir(model_name) or os.path.isfile(model_name): |
|
decoder = BeamSearchDecoderCTC.load_from_dir(model_name) |
|
else: |
|
language_model_glob = os.path.join( |
|
BeamSearchDecoderCTC._LANGUAGE_MODEL_SERIALIZED_DIRECTORY, "*" |
|
) |
|
alphabet_filename = BeamSearchDecoderCTC._ALPHABET_SERIALIZED_FILENAME |
|
allow_patterns = [language_model_glob, alphabet_filename] |
|
decoder = BeamSearchDecoderCTC.load_from_hf_hub(model_name, allow_patterns=allow_patterns) |
|
|
|
kwargs["decoder"] = decoder |
|
except ImportError as e: |
|
logger.warning(f"Could not load the `decoder` for {model_name}. Defaulting to raw CTC. Error: {e}") |
|
if not is_kenlm_available(): |
|
logger.warning("Try to install `kenlm`: `pip install kenlm") |
|
|
|
if not is_pyctcdecode_available(): |
|
logger.warning("Try to install `pyctcdecode`: `pip install pyctcdecode") |
|
|
|
if task == "translation" and model.config.task_specific_params: |
|
for key in model.config.task_specific_params: |
|
if key.startswith("translation"): |
|
task = key |
|
warnings.warn( |
|
f'"translation" task was used, instead of "translation_XX_to_YY", defaulting to "{task}"', |
|
UserWarning, |
|
) |
|
break |
|
|
|
if tokenizer is not None: |
|
kwargs["tokenizer"] = tokenizer |
|
|
|
if feature_extractor is not None: |
|
kwargs["feature_extractor"] = feature_extractor |
|
|
|
if torch_dtype is not None: |
|
kwargs["torch_dtype"] = torch_dtype |
|
|
|
if image_processor is not None: |
|
kwargs["image_processor"] = image_processor |
|
|
|
if device is not None: |
|
kwargs["device"] = device |
|
|
|
return pipeline_class(model=model, framework=framework, task=task, **kwargs) |
|
|