|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch CTRL model.""" |
|
|
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutput |
|
from ...modeling_utils import PreTrainedModel |
|
from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_linear_layer |
|
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings |
|
from .configuration_ctrl import CTRLConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "CTRLConfig" |
|
|
|
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"Salesforce/ctrl" |
|
|
|
] |
|
|
|
|
|
def angle_defn(pos, i, d_model_size): |
|
angle_rates = 1 / torch.pow(10000, (2 * (i // 2)) / d_model_size) |
|
return pos * angle_rates |
|
|
|
|
|
def positional_encoding(position, d_model_size, dtype): |
|
|
|
angle_rads = angle_defn( |
|
torch.arange(position, dtype=dtype).unsqueeze(1), |
|
torch.arange(d_model_size, dtype=dtype).unsqueeze(0), |
|
d_model_size, |
|
) |
|
|
|
sines = torch.sin(angle_rads[:, 0::2]) |
|
cosines = torch.cos(angle_rads[:, 1::2]) |
|
|
|
pos_encoding = torch.cat([sines, cosines], dim=-1) |
|
return pos_encoding |
|
|
|
|
|
def scaled_dot_product_attention(q, k, v, mask, attention_mask=None, head_mask=None): |
|
|
|
matmul_qk = torch.matmul(q, k.permute(0, 1, 3, 2)) |
|
|
|
dk = k.shape[-1] |
|
scaled_attention_logits = matmul_qk / np.sqrt(dk) |
|
|
|
if mask is not None: |
|
nd, ns = scaled_attention_logits.size(-2), scaled_attention_logits.size(-1) |
|
scaled_attention_logits += mask[ns - nd : ns, :ns] * -1e4 |
|
|
|
if attention_mask is not None: |
|
|
|
scaled_attention_logits = scaled_attention_logits + attention_mask |
|
|
|
attention_weights = torch.softmax(scaled_attention_logits, dim=-1) |
|
|
|
|
|
if head_mask is not None: |
|
attention_weights = attention_weights * head_mask |
|
|
|
output = torch.matmul(attention_weights, v) |
|
|
|
return output, attention_weights |
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
def __init__(self, d_model_size, num_heads): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.d_model_size = d_model_size |
|
|
|
self.depth = int(d_model_size / self.num_heads) |
|
|
|
self.Wq = nn.Linear(d_model_size, d_model_size) |
|
self.Wk = nn.Linear(d_model_size, d_model_size) |
|
self.Wv = nn.Linear(d_model_size, d_model_size) |
|
|
|
self.dense = nn.Linear(d_model_size, d_model_size) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
attention_head_size = self.d_model_size // self.num_heads |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, attention_head_size, self.pruned_heads) |
|
|
|
|
|
self.Wq = prune_linear_layer(self.Wq, index) |
|
self.Wk = prune_linear_layer(self.Wk, index) |
|
self.Wv = prune_linear_layer(self.Wv, index) |
|
self.dense = prune_linear_layer(self.dense, index, dim=1) |
|
|
|
|
|
self.num_heads = self.num_heads - len(heads) |
|
self.d_model_size = attention_head_size * self.num_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def split_into_heads(self, x, batch_size): |
|
x = x.reshape(batch_size, -1, self.num_heads, self.depth) |
|
return x.permute([0, 2, 1, 3]) |
|
|
|
def forward( |
|
self, |
|
v, |
|
k, |
|
q, |
|
mask, |
|
layer_past=None, |
|
attention_mask=None, |
|
head_mask=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
): |
|
batch_size = q.shape[0] |
|
|
|
q = self.Wq(q) |
|
k = self.Wk(k) |
|
v = self.Wv(v) |
|
|
|
q = self.split_into_heads(q, batch_size) |
|
k = self.split_into_heads(k, batch_size) |
|
v = self.split_into_heads(v, batch_size) |
|
if layer_past is not None: |
|
past_key, past_value = layer_past[0], layer_past[1] |
|
k = torch.cat((past_key, k), dim=-2) |
|
v = torch.cat((past_value, v), dim=-2) |
|
|
|
if use_cache is True: |
|
present = torch.stack((k, v)) |
|
else: |
|
present = (None,) |
|
|
|
output = scaled_dot_product_attention(q, k, v, mask, attention_mask, head_mask) |
|
scaled_attention = output[0].permute([0, 2, 1, 3]) |
|
attn = output[1] |
|
original_size_attention = scaled_attention.reshape(batch_size, -1, self.d_model_size) |
|
output = self.dense(original_size_attention) |
|
|
|
outputs = (output, present) |
|
if output_attentions: |
|
outputs = outputs + (attn,) |
|
return outputs |
|
|
|
|
|
def point_wise_feed_forward_network(d_model_size, dff): |
|
return nn.Sequential(nn.Linear(d_model_size, dff), nn.ReLU(), nn.Linear(dff, d_model_size)) |
|
|
|
|
|
class EncoderLayer(nn.Module): |
|
def __init__(self, d_model_size, num_heads, dff, rate=0.1): |
|
super().__init__() |
|
|
|
self.multi_head_attention = MultiHeadAttention(d_model_size, num_heads) |
|
self.ffn = point_wise_feed_forward_network(d_model_size, dff) |
|
|
|
self.layernorm1 = nn.LayerNorm(d_model_size, eps=1e-6) |
|
self.layernorm2 = nn.LayerNorm(d_model_size, eps=1e-6) |
|
|
|
self.dropout1 = nn.Dropout(rate) |
|
self.dropout2 = nn.Dropout(rate) |
|
|
|
def forward( |
|
self, x, mask, layer_past=None, attention_mask=None, head_mask=None, use_cache=False, output_attentions=False |
|
): |
|
normed = self.layernorm1(x) |
|
attn_outputs = self.multi_head_attention( |
|
normed, |
|
normed, |
|
normed, |
|
mask, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = attn_outputs[0] |
|
attn_output = self.dropout1(attn_output) |
|
out1 = x + attn_output |
|
|
|
out2 = self.layernorm2(out1) |
|
ffn_output = self.ffn(out2) |
|
ffn_output = self.dropout2(ffn_output) |
|
out2 = out1 + ffn_output |
|
|
|
outputs = (out2,) + attn_outputs[1:] |
|
return outputs |
|
|
|
|
|
class CTRLPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = CTRLConfig |
|
base_model_prefix = "transformer" |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, (nn.Linear, Conv1D)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
CTRL_START_DOCSTRING = r""" |
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`CTRLConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
CTRL_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0].shape[-2]` |
|
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. |
|
|
|
If `past_key_values` is used, only input IDs that do not have their past calculated should be passed as |
|
`input_ids`. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and |
|
[`PreTrainedTokenizer.encode`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
past_key_values (`Tuple[Tuple[torch.FloatTensor]]` of length `config.n_layers`): |
|
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see |
|
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have |
|
their past given to this model should not be passed as input ids as they have already been computed. |
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, |
|
1]`: |
|
|
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare CTRL Model transformer outputting raw hidden-states without any specific head on top.", |
|
CTRL_START_DOCSTRING, |
|
) |
|
class CTRLModel(CTRLPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.d_model_size = config.n_embd |
|
self.num_layers = config.n_layer |
|
|
|
self.pos_encoding = positional_encoding(config.n_positions, self.d_model_size, torch.float) |
|
|
|
self.w = nn.Embedding(config.vocab_size, config.n_embd) |
|
|
|
self.dropout = nn.Dropout(config.embd_pdrop) |
|
self.h = nn.ModuleList( |
|
[EncoderLayer(config.n_embd, config.n_head, config.dff, config.resid_pdrop) for _ in range(config.n_layer)] |
|
) |
|
self.layernorm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.w |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.w = new_embeddings |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.h[layer].multi_head_attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(CTRL_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]: |
|
r""" |
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, CTRLModel |
|
>>> import torch |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl") |
|
>>> model = CTRLModel.from_pretrained("Salesforce/ctrl") |
|
|
|
>>> # CTRL was trained with control codes as the first token |
|
>>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt") |
|
>>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values() |
|
|
|
>>> outputs = model(**inputs) |
|
|
|
>>> last_hidden_states = outputs.last_hidden_state |
|
>>> list(last_hidden_states.shape) |
|
[1, 5, 1280] |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
batch_size = input_ids.shape[0] |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
batch_size = inputs_embeds.shape[0] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
past_key_values = tuple([None] * len(self.h)) |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
if position_ids is None: |
|
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) |
|
position_ids = position_ids.unsqueeze(0) |
|
|
|
|
|
if attention_mask is not None: |
|
if batch_size <= 0: |
|
raise ValueError("batch_size has to be defined and > 0") |
|
attention_mask = attention_mask.view(batch_size, -1) |
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask.to(dtype=self.dtype) |
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min |
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer) |
|
|
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids.view(-1, input_shape[-1]) |
|
token_type_embeds = self.w(token_type_ids) |
|
token_type_embeds *= np.sqrt(self.d_model_size) |
|
else: |
|
token_type_embeds = 0 |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.w(input_ids) |
|
|
|
seq_len = input_shape[-1] |
|
mask = torch.triu(torch.ones(seq_len + past_length, seq_len + past_length), 1).to(device) |
|
|
|
inputs_embeds *= np.sqrt(self.d_model_size) |
|
|
|
|
|
self.pos_encoding = self.pos_encoding.to(device) |
|
pos_embeds = self.pos_encoding[position_ids, :] |
|
|
|
hidden_states = inputs_embeds + pos_embeds + token_type_embeds |
|
|
|
hidden_states = self.dropout(hidden_states) |
|
|
|
presents = () if use_cache else None |
|
all_hidden_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
for i, (h, layer_past) in enumerate(zip(self.h, past_key_values)): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
outputs = h( |
|
hidden_states, |
|
mask, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask[i], |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states, present = outputs[:2] |
|
if use_cache is True: |
|
presents = presents + (present,) |
|
|
|
if output_attentions: |
|
all_attentions += (outputs[2],) |
|
|
|
hidden_states = self.layernorm(hidden_states) |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The CTRL Model transformer with a language modeling head on top (linear layer with weights tied to the input |
|
embeddings). |
|
""", |
|
CTRL_START_DOCSTRING, |
|
) |
|
class CTRLLMHeadModel(CTRLPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.transformer = CTRLModel(config) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=True) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, use_cache=None, **kwargs): |
|
|
|
if past_key_values: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
|
|
return {"input_ids": input_ids, "past_key_values": past_key_values, "use_cache": use_cache} |
|
|
|
@add_start_docstrings_to_model_forward(CTRL_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import AutoTokenizer, CTRLLMHeadModel |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl") |
|
>>> model = CTRLLMHeadModel.from_pretrained("Salesforce/ctrl") |
|
|
|
>>> # CTRL was trained with control codes as the first token |
|
>>> inputs = tokenizer("Wikipedia The llama is", return_tensors="pt") |
|
>>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values() |
|
|
|
>>> sequence_ids = model.generate(inputs["input_ids"]) |
|
>>> sequences = tokenizer.batch_decode(sequence_ids) |
|
>>> sequences |
|
['Wikipedia The llama is a member of the family Bovidae. It is native to the Andes of Peru,'] |
|
|
|
>>> outputs = model(**inputs, labels=inputs["input_ids"]) |
|
>>> round(outputs.loss.item(), 2) |
|
9.21 |
|
|
|
>>> list(outputs.logits.shape) |
|
[1, 5, 246534] |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = transformer_outputs[0] |
|
|
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache( |
|
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor |
|
) -> Tuple[Tuple[torch.Tensor]]: |
|
""" |
|
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or |
|
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct |
|
beam_idx at every generation step. |
|
""" |
|
return tuple( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) |
|
for layer_past in past_key_values |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The CTRL Model transformer with a sequence classification head on top (linear layer). |
|
[`CTRLForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last |
|
token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in |
|
each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot |
|
guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last |
|
value in each row of the batch). |
|
""", |
|
CTRL_START_DOCSTRING, |
|
) |
|
class CTRLForSequenceClassification(CTRLPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.transformer = CTRLModel(config) |
|
self.classifier = nn.Linear(config.n_embd, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(CTRL_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
|
|
Returns: |
|
|
|
Example of single-label classification: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import AutoTokenizer, CTRLForSequenceClassification |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl") |
|
>>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl") |
|
|
|
>>> # CTRL was trained with control codes as the first token |
|
>>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt") |
|
>>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values() |
|
|
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
|
|
>>> predicted_class_id = logits.argmax().item() |
|
>>> model.config.id2label[predicted_class_id] |
|
'LABEL_0' |
|
``` |
|
|
|
```python |
|
>>> import torch |
|
|
|
>>> torch.manual_seed(42) # doctest: +IGNORE_RESULT |
|
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` |
|
>>> num_labels = len(model.config.id2label) |
|
>>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl", num_labels=num_labels) |
|
|
|
>>> labels = torch.tensor(1) |
|
>>> loss = model(**inputs, labels=labels).loss |
|
>>> round(loss.item(), 2) |
|
0.35 |
|
``` |
|
|
|
Example of multi-label classification: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import AutoTokenizer, CTRLForSequenceClassification |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl") |
|
>>> model = CTRLForSequenceClassification.from_pretrained( |
|
... "Salesforce/ctrl", problem_type="multi_label_classification" |
|
... ) |
|
|
|
>>> # CTRL was trained with control codes as the first token |
|
>>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt") |
|
>>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values() |
|
|
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
|
|
>>> predicted_class_id = logits.argmax().item() |
|
>>> model.config.id2label[predicted_class_id] |
|
'LABEL_0' |
|
``` |
|
|
|
```python |
|
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` |
|
>>> num_labels = len(model.config.id2label) |
|
>>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl", num_labels=num_labels) |
|
|
|
>>> num_labels = len(model.config.id2label) |
|
>>> labels = torch.nn.functional.one_hot(torch.tensor([predicted_class_id]), num_classes=num_labels).to( |
|
... torch.float |
|
... ) |
|
>>> loss = model(**inputs, labels=labels).loss |
|
>>> loss.backward() # doctest: +IGNORE_RESULT |
|
```""" |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = transformer_outputs[0] |
|
logits = self.classifier(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size, sequence_length = input_ids.shape[:2] |
|
else: |
|
batch_size, sequence_length = inputs_embeds.shape[:2] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
|
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to( |
|
logits.device |
|
) |
|
else: |
|
sequence_lengths = -1 |
|
logger.warning( |
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " |
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" |
|
) |
|
|
|
pooled_logits = logits[range(batch_size), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=pooled_logits, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|