|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Salesforce CTRL configuration""" |
|
|
|
from ...configuration_utils import PretrainedConfig |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"Salesforce/ctrl": "https://huggingface.co/Salesforce/ctrl/resolve/main/config.json" |
|
} |
|
|
|
|
|
class CTRLConfig(PretrainedConfig): |
|
""" |
|
This is the configuration class to store the configuration of a [`CTRLModel`] or a [`TFCTRLModel`]. It is used to |
|
instantiate a CTRL model according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the |
|
[Salesforce/ctrl](https://huggingface.co/Salesforce/ctrl) architecture from SalesForce. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 246534): |
|
Vocabulary size of the CTRL model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`CTRLModel`] or [`TFCTRLModel`]. |
|
n_positions (`int`, *optional*, defaults to 256): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
n_embd (`int`, *optional*, defaults to 1280): |
|
Dimensionality of the embeddings and hidden states. |
|
dff (`int`, *optional*, defaults to 8192): |
|
Dimensionality of the inner dimension of the feed forward networks (FFN). |
|
n_layer (`int`, *optional*, defaults to 48): |
|
Number of hidden layers in the Transformer encoder. |
|
n_head (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
resid_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
embd_pdrop (`int`, *optional*, defaults to 0.1): |
|
The dropout ratio for the embeddings. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-06): |
|
The epsilon to use in the layer normalization layers |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
|
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import CTRLConfig, CTRLModel |
|
|
|
>>> # Initializing a CTRL configuration |
|
>>> configuration = CTRLConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the configuration |
|
>>> model = CTRLModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "ctrl" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = { |
|
"max_position_embeddings": "n_positions", |
|
"hidden_size": "n_embd", |
|
"num_attention_heads": "n_head", |
|
"num_hidden_layers": "n_layer", |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=246534, |
|
n_positions=256, |
|
n_embd=1280, |
|
dff=8192, |
|
n_layer=48, |
|
n_head=16, |
|
resid_pdrop=0.1, |
|
embd_pdrop=0.1, |
|
layer_norm_epsilon=1e-6, |
|
initializer_range=0.02, |
|
use_cache=True, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.n_positions = n_positions |
|
self.n_embd = n_embd |
|
self.n_layer = n_layer |
|
self.n_head = n_head |
|
self.dff = dff |
|
self.resid_pdrop = resid_pdrop |
|
self.embd_pdrop = embd_pdrop |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
|
|
self.use_cache = use_cache |
|
|
|
super().__init__(**kwargs) |
|
|