|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch ConvNext model.""" |
|
|
|
|
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from ...activations import ACT2FN |
|
from ...modeling_outputs import ( |
|
BackboneOutput, |
|
BaseModelOutputWithNoAttention, |
|
BaseModelOutputWithPoolingAndNoAttention, |
|
ImageClassifierOutputWithNoAttention, |
|
) |
|
from ...modeling_utils import PreTrainedModel |
|
from ...utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from ...utils.backbone_utils import BackboneMixin |
|
from .configuration_convnext import ConvNextConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CONFIG_FOR_DOC = "ConvNextConfig" |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "facebook/convnext-tiny-224" |
|
_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7] |
|
|
|
|
|
_IMAGE_CLASS_CHECKPOINT = "facebook/convnext-tiny-224" |
|
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" |
|
|
|
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"facebook/convnext-tiny-224", |
|
|
|
] |
|
|
|
|
|
|
|
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: |
|
""" |
|
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
|
|
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, |
|
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... |
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the |
|
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the |
|
argument. |
|
""" |
|
if drop_prob == 0.0 or not training: |
|
return input |
|
keep_prob = 1 - drop_prob |
|
shape = (input.shape[0],) + (1,) * (input.ndim - 1) |
|
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) |
|
random_tensor.floor_() |
|
output = input.div(keep_prob) * random_tensor |
|
return output |
|
|
|
|
|
|
|
class ConvNextDropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" |
|
|
|
def __init__(self, drop_prob: Optional[float] = None) -> None: |
|
super().__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
return drop_path(hidden_states, self.drop_prob, self.training) |
|
|
|
def extra_repr(self) -> str: |
|
return "p={}".format(self.drop_prob) |
|
|
|
|
|
class ConvNextLayerNorm(nn.Module): |
|
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. |
|
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, |
|
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). |
|
""" |
|
|
|
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(normalized_shape)) |
|
self.bias = nn.Parameter(torch.zeros(normalized_shape)) |
|
self.eps = eps |
|
self.data_format = data_format |
|
if self.data_format not in ["channels_last", "channels_first"]: |
|
raise NotImplementedError(f"Unsupported data format: {self.data_format}") |
|
self.normalized_shape = (normalized_shape,) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
if self.data_format == "channels_last": |
|
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
elif self.data_format == "channels_first": |
|
input_dtype = x.dtype |
|
x = x.float() |
|
u = x.mean(1, keepdim=True) |
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
x = x.to(dtype=input_dtype) |
|
x = self.weight[:, None, None] * x + self.bias[:, None, None] |
|
return x |
|
|
|
|
|
class ConvNextEmbeddings(nn.Module): |
|
"""This class is comparable to (and inspired by) the SwinEmbeddings class |
|
found in src/transformers/models/swin/modeling_swin.py. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.patch_embeddings = nn.Conv2d( |
|
config.num_channels, config.hidden_sizes[0], kernel_size=config.patch_size, stride=config.patch_size |
|
) |
|
self.layernorm = ConvNextLayerNorm(config.hidden_sizes[0], eps=1e-6, data_format="channels_first") |
|
self.num_channels = config.num_channels |
|
|
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: |
|
num_channels = pixel_values.shape[1] |
|
if num_channels != self.num_channels: |
|
raise ValueError( |
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." |
|
) |
|
embeddings = self.patch_embeddings(pixel_values) |
|
embeddings = self.layernorm(embeddings) |
|
return embeddings |
|
|
|
|
|
class ConvNextLayer(nn.Module): |
|
"""This corresponds to the `Block` class in the original implementation. |
|
|
|
There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C, |
|
H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back |
|
|
|
The authors used (2) as they find it slightly faster in PyTorch. |
|
|
|
Args: |
|
config ([`ConvNextConfig`]): Model configuration class. |
|
dim (`int`): Number of input channels. |
|
drop_path (`float`): Stochastic depth rate. Default: 0.0. |
|
""" |
|
|
|
def __init__(self, config, dim, drop_path=0): |
|
super().__init__() |
|
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) |
|
self.layernorm = ConvNextLayerNorm(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear(dim, 4 * dim) |
|
self.act = ACT2FN[config.hidden_act] |
|
self.pwconv2 = nn.Linear(4 * dim, dim) |
|
self.layer_scale_parameter = ( |
|
nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True) |
|
if config.layer_scale_init_value > 0 |
|
else None |
|
) |
|
self.drop_path = ConvNextDropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: |
|
input = hidden_states |
|
x = self.dwconv(hidden_states) |
|
x = x.permute(0, 2, 3, 1) |
|
x = self.layernorm(x) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.pwconv2(x) |
|
if self.layer_scale_parameter is not None: |
|
x = self.layer_scale_parameter * x |
|
x = x.permute(0, 3, 1, 2) |
|
|
|
x = input + self.drop_path(x) |
|
return x |
|
|
|
|
|
class ConvNextStage(nn.Module): |
|
"""ConvNeXT stage, consisting of an optional downsampling layer + multiple residual blocks. |
|
|
|
Args: |
|
config ([`ConvNextConfig`]): Model configuration class. |
|
in_channels (`int`): Number of input channels. |
|
out_channels (`int`): Number of output channels. |
|
depth (`int`): Number of residual blocks. |
|
drop_path_rates(`List[float]`): Stochastic depth rates for each layer. |
|
""" |
|
|
|
def __init__(self, config, in_channels, out_channels, kernel_size=2, stride=2, depth=2, drop_path_rates=None): |
|
super().__init__() |
|
|
|
if in_channels != out_channels or stride > 1: |
|
self.downsampling_layer = nn.Sequential( |
|
ConvNextLayerNorm(in_channels, eps=1e-6, data_format="channels_first"), |
|
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride), |
|
) |
|
else: |
|
self.downsampling_layer = nn.Identity() |
|
drop_path_rates = drop_path_rates or [0.0] * depth |
|
self.layers = nn.Sequential( |
|
*[ConvNextLayer(config, dim=out_channels, drop_path=drop_path_rates[j]) for j in range(depth)] |
|
) |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: |
|
hidden_states = self.downsampling_layer(hidden_states) |
|
hidden_states = self.layers(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class ConvNextEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.stages = nn.ModuleList() |
|
drop_path_rates = [ |
|
x.tolist() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths)).split(config.depths) |
|
] |
|
prev_chs = config.hidden_sizes[0] |
|
for i in range(config.num_stages): |
|
out_chs = config.hidden_sizes[i] |
|
stage = ConvNextStage( |
|
config, |
|
in_channels=prev_chs, |
|
out_channels=out_chs, |
|
stride=2 if i > 0 else 1, |
|
depth=config.depths[i], |
|
drop_path_rates=drop_path_rates[i], |
|
) |
|
self.stages.append(stage) |
|
prev_chs = out_chs |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
output_hidden_states: Optional[bool] = False, |
|
return_dict: Optional[bool] = True, |
|
) -> Union[Tuple, BaseModelOutputWithNoAttention]: |
|
all_hidden_states = () if output_hidden_states else None |
|
|
|
for i, layer_module in enumerate(self.stages): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
hidden_states = layer_module(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) |
|
|
|
return BaseModelOutputWithNoAttention( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
) |
|
|
|
|
|
class ConvNextPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = ConvNextConfig |
|
base_model_prefix = "convnext" |
|
main_input_name = "pixel_values" |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, ConvNextEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
CONVNEXT_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it |
|
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters: |
|
config ([`ConvNextConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
CONVNEXT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See |
|
[`ConvNextImageProcessor.__call__`] for details. |
|
|
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare ConvNext model outputting raw features without any specific head on top.", |
|
CONVNEXT_START_DOCSTRING, |
|
) |
|
class ConvNextModel(ConvNextPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = ConvNextEmbeddings(config) |
|
self.encoder = ConvNextEncoder(config) |
|
|
|
|
|
self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPoolingAndNoAttention, |
|
config_class=_CONFIG_FOR_DOC, |
|
modality="vision", |
|
expected_output=_EXPECTED_OUTPUT_SHAPE, |
|
) |
|
def forward( |
|
self, |
|
pixel_values: torch.FloatTensor = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]: |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
embedding_output = self.embeddings(pixel_values) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
last_hidden_state = encoder_outputs[0] |
|
|
|
|
|
pooled_output = self.layernorm(last_hidden_state.mean([-2, -1])) |
|
|
|
if not return_dict: |
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndNoAttention( |
|
last_hidden_state=last_hidden_state, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
ConvNext Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for |
|
ImageNet. |
|
""", |
|
CONVNEXT_START_DOCSTRING, |
|
) |
|
class ConvNextForImageClassification(ConvNextPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.convnext = ConvNextModel(config) |
|
|
|
|
|
self.classifier = ( |
|
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_IMAGE_CLASS_CHECKPOINT, |
|
output_type=ImageClassifierOutputWithNoAttention, |
|
config_class=_CONFIG_FOR_DOC, |
|
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, |
|
) |
|
def forward( |
|
self, |
|
pixel_values: torch.FloatTensor = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.convnext(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) |
|
|
|
pooled_output = outputs.pooler_output if return_dict else outputs[1] |
|
|
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return ImageClassifierOutputWithNoAttention( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
ConvNeXt backbone, to be used with frameworks like DETR and MaskFormer. |
|
""", |
|
CONVNEXT_START_DOCSTRING, |
|
) |
|
class ConvNextBackbone(ConvNextPreTrainedModel, BackboneMixin): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
super()._init_backbone(config) |
|
|
|
self.embeddings = ConvNextEmbeddings(config) |
|
self.encoder = ConvNextEncoder(config) |
|
self.num_features = [config.hidden_sizes[0]] + config.hidden_sizes |
|
|
|
|
|
hidden_states_norms = {} |
|
for stage, num_channels in zip(self._out_features, self.channels): |
|
hidden_states_norms[stage] = ConvNextLayerNorm(num_channels, data_format="channels_first") |
|
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
pixel_values: torch.Tensor, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> BackboneOutput: |
|
""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoImageProcessor, AutoBackbone |
|
>>> import torch |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224") |
|
>>> model = AutoBackbone.from_pretrained("facebook/convnext-tiny-224") |
|
|
|
>>> inputs = processor(image, return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
embedding_output = self.embeddings(pixel_values) |
|
|
|
outputs = self.encoder( |
|
embedding_output, |
|
output_hidden_states=True, |
|
return_dict=True, |
|
) |
|
|
|
hidden_states = outputs.hidden_states |
|
|
|
feature_maps = () |
|
|
|
for idx, (stage, hidden_state) in enumerate(zip(self.stage_names[1:], hidden_states[1:])): |
|
if stage in self.out_features: |
|
hidden_state = self.hidden_states_norms[stage](hidden_state) |
|
feature_maps += (hidden_state,) |
|
|
|
if not return_dict: |
|
output = (feature_maps,) |
|
if output_hidden_states: |
|
output += (outputs.hidden_states,) |
|
return output |
|
|
|
return BackboneOutput( |
|
feature_maps=feature_maps, |
|
hidden_states=outputs.hidden_states if output_hidden_states else None, |
|
attentions=None, |
|
) |
|
|