|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Image processor class for ConvNeXT.""" |
|
|
|
from typing import Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
|
|
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict |
|
from ...image_transforms import ( |
|
center_crop, |
|
get_resize_output_image_size, |
|
resize, |
|
to_channel_dimension_format, |
|
) |
|
from ...image_utils import ( |
|
IMAGENET_STANDARD_MEAN, |
|
IMAGENET_STANDARD_STD, |
|
ChannelDimension, |
|
ImageInput, |
|
PILImageResampling, |
|
infer_channel_dimension_format, |
|
is_scaled_image, |
|
make_list_of_images, |
|
to_numpy_array, |
|
valid_images, |
|
) |
|
from ...utils import TensorType, is_vision_available, logging |
|
|
|
|
|
if is_vision_available(): |
|
import PIL |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class ConvNextImageProcessor(BaseImageProcessor): |
|
r""" |
|
Constructs a ConvNeXT image processor. |
|
|
|
Args: |
|
do_resize (`bool`, *optional*, defaults to `True`): |
|
Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overriden |
|
by `do_resize` in the `preprocess` method. |
|
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 384}`): |
|
Resolution of the output image after `resize` is applied. If `size["shortest_edge"]` >= 384, the image is |
|
resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the image will |
|
be matched to `int(size["shortest_edge"]/crop_pct)`, after which the image is cropped to |
|
`(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`. Can |
|
be overriden by `size` in the `preprocess` method. |
|
crop_pct (`float` *optional*, defaults to 224 / 256): |
|
Percentage of the image to crop. Only has an effect if `do_resize` is `True` and size < 384. Can be |
|
overriden by `crop_pct` in the `preprocess` method. |
|
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): |
|
Resampling filter to use if resizing the image. Can be overriden by `resample` in the `preprocess` method. |
|
do_rescale (`bool`, *optional*, defaults to `True`): |
|
Whether to rescale the image by the specified scale `rescale_factor`. Can be overriden by `do_rescale` in |
|
the `preprocess` method. |
|
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): |
|
Scale factor to use if rescaling the image. Can be overriden by `rescale_factor` in the `preprocess` |
|
method. |
|
do_normalize (`bool`, *optional*, defaults to `True`): |
|
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` |
|
method. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): |
|
Mean to use if normalizing the image. This is a float or list of floats the length of the number of |
|
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): |
|
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the |
|
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. |
|
""" |
|
|
|
model_input_names = ["pixel_values"] |
|
|
|
def __init__( |
|
self, |
|
do_resize: bool = True, |
|
size: Dict[str, int] = None, |
|
crop_pct: float = None, |
|
resample: PILImageResampling = PILImageResampling.BILINEAR, |
|
do_rescale: bool = True, |
|
rescale_factor: Union[int, float] = 1 / 255, |
|
do_normalize: bool = True, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
**kwargs, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
size = size if size is not None else {"shortest_edge": 384} |
|
size = get_size_dict(size, default_to_square=False) |
|
|
|
self.do_resize = do_resize |
|
self.size = size |
|
|
|
self.crop_pct = crop_pct if crop_pct is not None else 224 / 256 |
|
self.resample = resample |
|
self.do_rescale = do_rescale |
|
self.rescale_factor = rescale_factor |
|
self.do_normalize = do_normalize |
|
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN |
|
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD |
|
|
|
def resize( |
|
self, |
|
image: np.ndarray, |
|
size: Dict[str, int], |
|
crop_pct: float, |
|
resample: PILImageResampling = PILImageResampling.BICUBIC, |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
) -> np.ndarray: |
|
""" |
|
Resize an image. |
|
|
|
Args: |
|
image (`np.ndarray`): |
|
Image to resize. |
|
size (`Dict[str, int]`): |
|
Dictionary of the form `{"shortest_edge": int}`, specifying the size of the output image. If |
|
`size["shortest_edge"]` >= 384 image is resized to `(size["shortest_edge"], size["shortest_edge"])`. |
|
Otherwise, the smaller edge of the image will be matched to `int(size["shortest_edge"] / crop_pct)`, |
|
after which the image is cropped to `(size["shortest_edge"], size["shortest_edge"])`. |
|
crop_pct (`float`): |
|
Percentage of the image to crop. Only has an effect if size < 384. |
|
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): |
|
Resampling filter to use when resizing the image. |
|
data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format of the image. If not provided, it will be the same as the input image. |
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format of the input image. If not provided, it will be inferred from the input |
|
image. |
|
""" |
|
size = get_size_dict(size, default_to_square=False) |
|
if "shortest_edge" not in size: |
|
raise ValueError(f"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}") |
|
shortest_edge = size["shortest_edge"] |
|
|
|
if shortest_edge < 384: |
|
|
|
resize_shortest_edge = int(shortest_edge / crop_pct) |
|
resize_size = get_resize_output_image_size( |
|
image, size=resize_shortest_edge, default_to_square=False, input_data_format=input_data_format |
|
) |
|
image = resize( |
|
image=image, |
|
size=resize_size, |
|
resample=resample, |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
**kwargs, |
|
) |
|
|
|
return center_crop( |
|
image=image, |
|
size=(shortest_edge, shortest_edge), |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
**kwargs, |
|
) |
|
else: |
|
|
|
return resize( |
|
image, |
|
size=(shortest_edge, shortest_edge), |
|
resample=resample, |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
**kwargs, |
|
) |
|
|
|
def preprocess( |
|
self, |
|
images: ImageInput, |
|
do_resize: bool = None, |
|
size: Dict[str, int] = None, |
|
crop_pct: float = None, |
|
resample: PILImageResampling = None, |
|
do_rescale: bool = None, |
|
rescale_factor: float = None, |
|
do_normalize: bool = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
data_format: ChannelDimension = ChannelDimension.FIRST, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
) -> PIL.Image.Image: |
|
""" |
|
Preprocess an image or batch of images. |
|
|
|
Args: |
|
images (`ImageInput`): |
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If |
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`. |
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`): |
|
Whether to resize the image. |
|
size (`Dict[str, int]`, *optional*, defaults to `self.size`): |
|
Size of the output image after `resize` has been applied. If `size["shortest_edge"]` >= 384, the image |
|
is resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the |
|
image will be matched to `int(size["shortest_edge"]/ crop_pct)`, after which the image is cropped to |
|
`(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`. |
|
crop_pct (`float`, *optional*, defaults to `self.crop_pct`): |
|
Percentage of the image to crop if size < 384. |
|
resample (`int`, *optional*, defaults to `self.resample`): |
|
Resampling filter to use if resizing the image. This can be one of `PILImageResampling`, filters. Only |
|
has an effect if `do_resize` is set to `True`. |
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): |
|
Whether to rescale the image values between [0 - 1]. |
|
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): |
|
Rescale factor to rescale the image by if `do_rescale` is set to `True`. |
|
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): |
|
Whether to normalize the image. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): |
|
Image mean. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): |
|
Image standard deviation. |
|
return_tensors (`str` or `TensorType`, *optional*): |
|
The type of tensors to return. Can be one of: |
|
- Unset: Return a list of `np.ndarray`. |
|
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. |
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. |
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. |
|
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. |
|
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): |
|
The channel dimension format for the output image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- Unset: Use the channel dimension format of the input image. |
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred |
|
from the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. |
|
""" |
|
do_resize = do_resize if do_resize is not None else self.do_resize |
|
crop_pct = crop_pct if crop_pct is not None else self.crop_pct |
|
resample = resample if resample is not None else self.resample |
|
do_rescale = do_rescale if do_rescale is not None else self.do_rescale |
|
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor |
|
do_normalize = do_normalize if do_normalize is not None else self.do_normalize |
|
image_mean = image_mean if image_mean is not None else self.image_mean |
|
image_std = image_std if image_std is not None else self.image_std |
|
|
|
size = size if size is not None else self.size |
|
size = get_size_dict(size, default_to_square=False) |
|
|
|
images = make_list_of_images(images) |
|
|
|
if not valid_images(images): |
|
raise ValueError( |
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " |
|
"torch.Tensor, tf.Tensor or jax.ndarray." |
|
) |
|
|
|
if do_resize and size is None or resample is None: |
|
raise ValueError("Size and resample must be specified if do_resize is True.") |
|
|
|
if do_resize and size["shortest_edge"] < 384 and crop_pct is None: |
|
raise ValueError("crop_pct must be specified if size < 384.") |
|
|
|
if do_rescale and rescale_factor is None: |
|
raise ValueError("Rescale factor must be specified if do_rescale is True.") |
|
|
|
if do_normalize and (image_mean is None or image_std is None): |
|
raise ValueError("Image mean and std must be specified if do_normalize is True.") |
|
|
|
|
|
images = [to_numpy_array(image) for image in images] |
|
|
|
if is_scaled_image(images[0]) and do_rescale: |
|
logger.warning_once( |
|
"It looks like you are trying to rescale already rescaled images. If the input" |
|
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." |
|
) |
|
|
|
if input_data_format is None: |
|
|
|
input_data_format = infer_channel_dimension_format(images[0]) |
|
|
|
if do_resize: |
|
images = [ |
|
self.resize( |
|
image=image, size=size, crop_pct=crop_pct, resample=resample, input_data_format=input_data_format |
|
) |
|
for image in images |
|
] |
|
|
|
if do_rescale: |
|
images = [ |
|
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) |
|
for image in images |
|
] |
|
|
|
if do_normalize: |
|
images = [ |
|
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) |
|
for image in images |
|
] |
|
|
|
images = [ |
|
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images |
|
] |
|
|
|
data = {"pixel_values": images} |
|
return BatchFeature(data=data, tensor_type=return_tensors) |
|
|