|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" BridgeTower model configuration""" |
|
|
|
import os |
|
from typing import Union |
|
|
|
from ...configuration_utils import PretrainedConfig |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", |
|
"BridgeTower/bridgetower-base-itm-mlm": ( |
|
"https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json" |
|
), |
|
} |
|
|
|
|
|
class BridgeTowerVisionConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the vision configuration of a [`BridgeTowerModel`]. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the bridgetower-base |
|
[BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in visual encoder model. |
|
patch_size (`int`, *optional*, defaults to 16): |
|
The size (resolution) of each patch. |
|
image_size (`int`, *optional*, defaults to 288): |
|
The size (resolution) of each image. |
|
initializer_factor (`float``, *optional*, defaults to 1): |
|
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization |
|
testing). |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05): |
|
The epsilon used by the layer normalization layers. |
|
stop_gradient (`bool`, *optional*, defaults to `False`): |
|
Whether to stop gradient for training. |
|
share_layernorm (`bool`, *optional*, defaults to `True`): |
|
Whether LayerNorm layers are shared. |
|
remove_last_layer (`bool`, *optional*, defaults to `False`): |
|
Whether to remove the last layer from the vision encoder. |
|
|
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import BridgeTowerVisionConfig |
|
|
|
>>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the vision model |
|
>>> configuration = BridgeTowerVisionConfig() |
|
|
|
>>> # Accessing the configuration |
|
>>> configuration |
|
```""" |
|
model_type = "bridgetower_vision_model" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_channels=3, |
|
patch_size=16, |
|
image_size=288, |
|
initializer_factor=1, |
|
layer_norm_eps=1e-05, |
|
stop_gradient=False, |
|
share_layernorm=True, |
|
remove_last_layer=False, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
self.initializer_factor = initializer_factor |
|
self.layer_norm_eps = layer_norm_eps |
|
self.stop_gradient = stop_gradient |
|
self.share_layernorm = share_layernorm |
|
self.remove_last_layer = remove_last_layer |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
if config_dict.get("model_type") == "bridgetower": |
|
config_dict = config_dict["text_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class BridgeTowerTextConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the text configuration of a [`BridgeTowerModel`]. The default values here |
|
are copied from RoBERTa. Instantiating a configuration with the defaults will yield a similar configuration to that |
|
of the bridgetower-base [BridegTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) |
|
architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50265): |
|
Vocabulary size of the text part of the model. Defines the number of different tokens that can be |
|
represented by the `inputs_ids` passed when calling [`BridgeTowerModel`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"silu"` and `"gelu_new"` are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (`int`, *optional*, defaults to 514): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
type_vocab_size (`int`, *optional*, defaults to 2): |
|
The vocabulary size of the `token_type_ids`. |
|
initializer_factor (`float``, *optional*, defaults to 1): |
|
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization |
|
testing). |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05): |
|
The epsilon used by the layer normalization layers. |
|
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): |
|
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For |
|
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to |
|
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). |
|
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models |
|
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). |
|
is_decoder (`bool`, *optional*, defaults to `False`): |
|
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import BridgeTowerTextConfig |
|
|
|
>>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the text model |
|
>>> configuration = BridgeTowerTextConfig() |
|
|
|
>>> # Accessing the configuration |
|
>>> configuration |
|
```""" |
|
model_type = "bridgetower_text_model" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50265, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
initializer_factor=1, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=514, |
|
type_vocab_size=1, |
|
layer_norm_eps=1e-05, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
position_embedding_type="absolute", |
|
use_cache=True, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_factor = initializer_factor |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.layer_norm_eps = layer_norm_eps |
|
self.position_embedding_type = position_embedding_type |
|
self.use_cache = use_cache |
|
self.pad_token_id = pad_token_id |
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
if config_dict.get("model_type") == "bridgetower": |
|
config_dict = config_dict["text_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class BridgeTowerConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`BridgeTowerModel`]. It is used to instantiate a |
|
BridgeTower model according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the bridgetower-base |
|
[BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
share_cross_modal_transformer_layers (`bool`, *optional*, defaults to `True`): |
|
Whether cross modal transformer layers are shared. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
initializer_factor (`float``, *optional*, defaults to 1): |
|
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization |
|
testing). |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05): |
|
The epsilon used by the layer normalization layers. |
|
share_link_tower_layers (`bool`, *optional*, defaults to `False`): |
|
Whether the bride/link tower layers are shared. |
|
link_tower_type (`str`, *optional*, defaults to `"add"`): |
|
Type of the bridge/link layer. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_hidden_layers (`int`, *optional*, defaults to 6): |
|
Number of hidden layers in the Transformer encoder. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether to tie input and output embeddings. |
|
init_layernorm_from_vision_encoder (`bool`, *optional*, defaults to `False`): |
|
Whether to init LayerNorm from the vision encoder. |
|
text_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`BridgeTowerTextConfig`]. |
|
vision_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`BridgeTowerVisionConfig`]. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import BridgeTowerModel, BridgeTowerConfig |
|
|
|
>>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration |
|
>>> configuration = BridgeTowerConfig() |
|
|
|
>>> # Initializing a model from the BridgeTower/bridgetower-base style configuration |
|
>>> model = BridgeTowerModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "bridgetower" |
|
|
|
def __init__( |
|
self, |
|
share_cross_modal_transformer_layers=True, |
|
hidden_act="gelu", |
|
hidden_size=768, |
|
initializer_factor=1, |
|
layer_norm_eps=1e-05, |
|
share_link_tower_layers=False, |
|
link_tower_type="add", |
|
num_attention_heads=12, |
|
num_hidden_layers=6, |
|
tie_word_embeddings=False, |
|
init_layernorm_from_vision_encoder=False, |
|
text_config=None, |
|
vision_config=None, |
|
**kwargs, |
|
): |
|
|
|
_ = kwargs.pop("text_config_dict", None) |
|
_ = kwargs.pop("vision_config_dict", None) |
|
|
|
super().__init__(**kwargs) |
|
self.share_cross_modal_transformer_layers = share_cross_modal_transformer_layers |
|
self.hidden_act = hidden_act |
|
self.hidden_size = hidden_size |
|
self.initializer_factor = initializer_factor |
|
self.layer_norm_eps = layer_norm_eps |
|
self.share_link_tower_layers = share_link_tower_layers |
|
self.link_tower_type = link_tower_type |
|
self.num_attention_heads = num_attention_heads |
|
self.num_hidden_layers = num_hidden_layers |
|
self.tie_word_embeddings = tie_word_embeddings |
|
self.init_layernorm_from_vision_encoder = init_layernorm_from_vision_encoder |
|
|
|
if text_config is None: |
|
text_config = {} |
|
logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.") |
|
|
|
if vision_config is None: |
|
vision_config = {} |
|
logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.") |
|
|
|
self.text_config = BridgeTowerTextConfig(**text_config) |
|
self.vision_config = BridgeTowerVisionConfig(**vision_config) |
|
|
|
@classmethod |
|
def from_text_vision_configs( |
|
cls, text_config: BridgeTowerTextConfig, vision_config: BridgeTowerVisionConfig, **kwargs |
|
): |
|
r""" |
|
Instantiate a [`BridgeTowerConfig`] (or a derived class) from BridgeTower text model configuration. Returns: |
|
[`BridgeTowerConfig`]: An instance of a configuration object |
|
""" |
|
|
|
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) |
|
|