|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch BiT model. Also supports backbone for ViT hybrid.""" |
|
|
|
import collections |
|
import math |
|
from typing import Optional, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import Tensor, nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from ...activations import ACT2FN |
|
from ...modeling_outputs import ( |
|
BackboneOutput, |
|
BaseModelOutputWithNoAttention, |
|
BaseModelOutputWithPoolingAndNoAttention, |
|
ImageClassifierOutputWithNoAttention, |
|
) |
|
from ...modeling_utils import PreTrainedModel |
|
from ...utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from ...utils.backbone_utils import BackboneMixin |
|
from .configuration_bit import BitConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CONFIG_FOR_DOC = "BitConfig" |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "google/bit-50" |
|
_EXPECTED_OUTPUT_SHAPE = [1, 2048, 7, 7] |
|
|
|
|
|
_IMAGE_CLASS_CHECKPOINT = "google/bit-50" |
|
_IMAGE_CLASS_EXPECTED_OUTPUT = "tiger cat" |
|
|
|
BIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"google/bit-50", |
|
|
|
] |
|
|
|
|
|
def get_padding_value(padding=None, kernel_size=7, stride=1, dilation=1) -> Tuple[Tuple, bool]: |
|
r""" |
|
Utility function to get the tuple padding value given the kernel_size and padding. |
|
|
|
Args: |
|
padding (Union[`str`, `int`], *optional*): |
|
Padding value, can be either `"same"`, `"valid"`. If a different value is provided the default padding from |
|
PyTorch is used. |
|
kernel_size (`int`, *optional*, defaults to 7): |
|
Kernel size of the convolution layers. |
|
stride (`int`, *optional*, defaults to 1): |
|
Stride value of the convolution layers. |
|
dilation (`int`, *optional*, defaults to 1): |
|
Dilation value of the convolution layers. |
|
""" |
|
dynamic = False |
|
if padding is None: |
|
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 |
|
return padding, dynamic |
|
|
|
if isinstance(padding, str): |
|
|
|
padding = padding.lower() |
|
if padding == "same": |
|
|
|
if stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0: |
|
|
|
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 |
|
else: |
|
|
|
padding = 0 |
|
dynamic = True |
|
elif padding == "valid": |
|
|
|
padding = 0 |
|
else: |
|
|
|
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 |
|
return padding, dynamic |
|
|
|
|
|
class WeightStandardizedConv2d(nn.Conv2d): |
|
"""Conv2d with Weight Standardization. Includes TensorFlow compatible SAME padding. Used for ViT Hybrid model. |
|
|
|
Paper: [Micro-Batch Training with Batch-Channel Normalization and Weight |
|
Standardization](https://arxiv.org/abs/1903.10520v2) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channel, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding="SAME", |
|
dilation=1, |
|
groups=1, |
|
bias=False, |
|
eps=1e-6, |
|
): |
|
padding, is_dynamic = get_padding_value(padding, kernel_size, stride=stride, dilation=dilation) |
|
super().__init__( |
|
in_channel, |
|
out_channels, |
|
kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=groups, |
|
bias=bias, |
|
) |
|
if is_dynamic: |
|
self.pad = DynamicPad2d(kernel_size, stride, dilation) |
|
else: |
|
self.pad = None |
|
self.eps = eps |
|
|
|
def forward(self, hidden_state): |
|
if self.pad is not None: |
|
hidden_state = self.pad(hidden_state) |
|
weight = nn.functional.batch_norm( |
|
self.weight.reshape(1, self.out_channels, -1), None, None, training=True, momentum=0.0, eps=self.eps |
|
).reshape_as(self.weight) |
|
hidden_state = nn.functional.conv2d( |
|
hidden_state, weight, self.bias, self.stride, self.padding, self.dilation, self.groups |
|
) |
|
return hidden_state |
|
|
|
|
|
class BitGroupNormActivation(nn.GroupNorm): |
|
r""" |
|
A module that combines group normalization with an activation function. |
|
""" |
|
|
|
def __init__(self, config, num_channels, eps=1e-5, affine=True, apply_activation=True): |
|
super(BitGroupNormActivation, self).__init__(config.num_groups, num_channels, eps=eps, affine=affine) |
|
if apply_activation: |
|
self.activation = ACT2FN[config.hidden_act] |
|
else: |
|
self.activation = nn.Identity() |
|
|
|
def forward(self, hidden_state): |
|
hidden_state = nn.functional.group_norm(hidden_state, self.num_groups, self.weight, self.bias, self.eps) |
|
hidden_state = self.activation(hidden_state) |
|
return hidden_state |
|
|
|
|
|
class DynamicPad2d(nn.Module): |
|
r""" |
|
A module that wraps dynamic padding of any input, given the parameters of the convolutional layer and the input |
|
hidden states. |
|
""" |
|
|
|
def __init__(self, kernel_size, stride, dilation, value=0): |
|
super().__init__() |
|
|
|
if isinstance(kernel_size, int): |
|
kernel_size = (kernel_size, kernel_size) |
|
|
|
if isinstance(stride, int): |
|
stride = (stride, stride) |
|
|
|
if isinstance(dilation, int): |
|
dilation = (dilation, dilation) |
|
|
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.dilation = dilation |
|
self.value = value |
|
|
|
def compute_padding(x, kernel_size, stride, dilation): |
|
return max((math.ceil(x / stride) - 1) * stride + (kernel_size - 1) * dilation + 1 - x, 0) |
|
|
|
self.compute_padding = compute_padding |
|
|
|
def __call__(self, input): |
|
|
|
input_height, input_width = input.size()[-2:] |
|
|
|
|
|
padding_height = self.compute_padding(input_height, self.kernel_size[0], self.stride[0], self.dilation[0]) |
|
padding_width = self.compute_padding(input_width, self.kernel_size[1], self.stride[1], self.dilation[1]) |
|
|
|
|
|
if padding_height > 0 or padding_width > 0: |
|
input = nn.functional.pad( |
|
input, |
|
[ |
|
padding_width // 2, |
|
padding_width - padding_width // 2, |
|
padding_height // 2, |
|
padding_height - padding_height // 2, |
|
], |
|
value=self.value, |
|
) |
|
return input |
|
|
|
|
|
class BitMaxPool2d(nn.MaxPool2d): |
|
"""Tensorflow like 'SAME' wrapper for 2D max pooling""" |
|
|
|
def __init__( |
|
self, |
|
kernel_size: int, |
|
stride=None, |
|
dilation=1, |
|
ceil_mode=False, |
|
padding=(0, 0), |
|
padding_value=0, |
|
use_dynamic_padding=True, |
|
): |
|
kernel_size = kernel_size if isinstance(kernel_size, collections.abc.Iterable) else (kernel_size, kernel_size) |
|
stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride) |
|
dilation = dilation if isinstance(dilation, collections.abc.Iterable) else (dilation, dilation) |
|
super().__init__(kernel_size, stride, padding, dilation, ceil_mode) |
|
if use_dynamic_padding: |
|
self.pad = DynamicPad2d(kernel_size, stride, dilation, padding_value) |
|
else: |
|
self.pad = nn.Identity() |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.pad(hidden_states) |
|
return nn.functional.max_pool2d( |
|
hidden_states, self.kernel_size, self.stride, self.padding, self.dilation, self.ceil_mode |
|
) |
|
|
|
|
|
class BitEmbeddings(nn.Module): |
|
""" |
|
BiT Embeddings (stem) composed of a single aggressive convolution. |
|
""" |
|
|
|
def __init__(self, config: BitConfig): |
|
super().__init__() |
|
|
|
self.convolution = WeightStandardizedConv2d( |
|
config.num_channels, |
|
config.embedding_size, |
|
kernel_size=7, |
|
stride=2, |
|
eps=1e-8, |
|
padding=config.global_padding, |
|
) |
|
|
|
self.pooler = BitMaxPool2d(kernel_size=3, stride=2, use_dynamic_padding=config.embedding_dynamic_padding) |
|
|
|
|
|
if config.global_padding is not None and config.global_padding.upper() == "SAME": |
|
self.pad = nn.Identity() |
|
else: |
|
self.pad = nn.ConstantPad2d(padding=(1, 1, 1, 1), value=0.0) |
|
|
|
if not config.layer_type == "preactivation": |
|
self.norm = BitGroupNormActivation(config, num_channels=config.embedding_size) |
|
else: |
|
self.norm = nn.Identity() |
|
|
|
self.num_channels = config.num_channels |
|
|
|
def forward(self, pixel_values: Tensor) -> Tensor: |
|
num_channels = pixel_values.shape[1] |
|
if num_channels != self.num_channels: |
|
raise ValueError( |
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." |
|
) |
|
|
|
embedding = self.convolution(pixel_values) |
|
|
|
embedding = self.pad(embedding) |
|
|
|
embedding = self.norm(embedding) |
|
|
|
embedding = self.pooler(embedding) |
|
|
|
return embedding |
|
|
|
|
|
|
|
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: |
|
""" |
|
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
|
|
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, |
|
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... |
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the |
|
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the |
|
argument. |
|
""" |
|
if drop_prob == 0.0 or not training: |
|
return input |
|
keep_prob = 1 - drop_prob |
|
shape = (input.shape[0],) + (1,) * (input.ndim - 1) |
|
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) |
|
random_tensor.floor_() |
|
output = input.div(keep_prob) * random_tensor |
|
return output |
|
|
|
|
|
|
|
class BitDropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" |
|
|
|
def __init__(self, drop_prob: Optional[float] = None) -> None: |
|
super().__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
return drop_path(hidden_states, self.drop_prob, self.training) |
|
|
|
def extra_repr(self) -> str: |
|
return "p={}".format(self.drop_prob) |
|
|
|
|
|
def make_div(value, divisor=8): |
|
min_value = divisor |
|
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) |
|
if new_value < 0.9 * value: |
|
new_value += divisor |
|
return new_value |
|
|
|
|
|
class BitPreActivationBottleneckLayer(nn.Module): |
|
"""Pre-activation (v2) bottleneck block. |
|
Follows the implementation of "Identity Mappings in Deep Residual Networks": |
|
https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua |
|
|
|
Except it puts the stride on 3x3 conv when available. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
config, |
|
in_channels, |
|
out_channels=None, |
|
bottle_ratio=0.25, |
|
stride=1, |
|
dilation=1, |
|
first_dilation=None, |
|
groups=1, |
|
drop_path_rate=0.0, |
|
is_first_layer=False, |
|
): |
|
super().__init__() |
|
|
|
first_dilation = first_dilation or dilation |
|
|
|
out_channels = out_channels or in_channels |
|
mid_channels = make_div(out_channels * bottle_ratio) |
|
|
|
if is_first_layer: |
|
self.downsample = BitDownsampleConv( |
|
config, |
|
in_channels, |
|
out_channels, |
|
stride=stride, |
|
preact=True, |
|
) |
|
else: |
|
self.downsample = None |
|
|
|
self.norm1 = BitGroupNormActivation(config, in_channels) |
|
self.conv1 = WeightStandardizedConv2d(in_channels, mid_channels, 1, eps=1e-8, padding=config.global_padding) |
|
|
|
self.norm2 = BitGroupNormActivation(config, num_channels=mid_channels) |
|
self.conv2 = WeightStandardizedConv2d( |
|
mid_channels, mid_channels, 3, stride=stride, groups=groups, eps=1e-8, padding=config.global_padding |
|
) |
|
|
|
self.norm3 = BitGroupNormActivation(config, mid_channels) |
|
self.conv3 = WeightStandardizedConv2d(mid_channels, out_channels, 1, eps=1e-8, padding=config.global_padding) |
|
|
|
self.drop_path = BitDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() |
|
|
|
def forward(self, hidden_states): |
|
hidden_states_preact = self.norm1(hidden_states) |
|
|
|
|
|
shortcut = hidden_states |
|
if self.downsample is not None: |
|
shortcut = self.downsample(hidden_states_preact) |
|
|
|
|
|
hidden_states = self.conv1(hidden_states_preact) |
|
hidden_states = self.conv2(self.norm2(hidden_states)) |
|
hidden_states = self.conv3(self.norm3(hidden_states)) |
|
hidden_states = self.drop_path(hidden_states) |
|
return hidden_states + shortcut |
|
|
|
|
|
class BitBottleneckLayer(nn.Module): |
|
"""Non Pre-activation bottleneck block, equivalent to V1.5/V1b bottleneck. Used for ViT Hybrid.""" |
|
|
|
def __init__( |
|
self, |
|
config, |
|
in_channels, |
|
out_channels=None, |
|
bottle_ratio=0.25, |
|
stride=1, |
|
dilation=1, |
|
first_dilation=None, |
|
groups=1, |
|
drop_path_rate=0.0, |
|
is_first_layer=False, |
|
): |
|
super().__init__() |
|
first_dilation = first_dilation or dilation |
|
|
|
out_channels = out_channels or in_channels |
|
mid_chs = make_div(out_channels * bottle_ratio) |
|
|
|
if is_first_layer: |
|
self.downsample = BitDownsampleConv( |
|
config, |
|
in_channels, |
|
out_channels, |
|
stride=stride, |
|
preact=False, |
|
) |
|
else: |
|
self.downsample = None |
|
|
|
self.conv1 = WeightStandardizedConv2d(in_channels, mid_chs, 1, eps=1e-8, padding=config.global_padding) |
|
self.norm1 = BitGroupNormActivation(config, num_channels=mid_chs) |
|
self.conv2 = WeightStandardizedConv2d( |
|
mid_chs, |
|
mid_chs, |
|
3, |
|
stride=stride, |
|
dilation=first_dilation, |
|
groups=groups, |
|
eps=1e-8, |
|
padding=config.global_padding, |
|
) |
|
self.norm2 = BitGroupNormActivation(config, num_channels=mid_chs) |
|
self.conv3 = WeightStandardizedConv2d(mid_chs, out_channels, 1, eps=1e-8, padding=config.global_padding) |
|
self.norm3 = BitGroupNormActivation(config, num_channels=out_channels, apply_activation=False) |
|
self.drop_path = BitDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() |
|
|
|
self.activation = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, hidden_states): |
|
|
|
shortcut = hidden_states |
|
if self.downsample is not None: |
|
shortcut = self.downsample(hidden_states) |
|
|
|
|
|
hidden_states = self.conv1(hidden_states) |
|
hidden_states = self.norm1(hidden_states) |
|
|
|
hidden_states = self.conv2(hidden_states) |
|
hidden_states = self.norm2(hidden_states) |
|
|
|
hidden_states = self.conv3(hidden_states) |
|
hidden_states = self.norm3(hidden_states) |
|
|
|
hidden_states = self.drop_path(hidden_states) |
|
hidden_states = self.activation(hidden_states + shortcut) |
|
return hidden_states |
|
|
|
|
|
class BitDownsampleConv(nn.Module): |
|
def __init__( |
|
self, |
|
config, |
|
in_channels, |
|
out_channels, |
|
stride=1, |
|
preact=True, |
|
): |
|
super().__init__() |
|
self.conv = WeightStandardizedConv2d( |
|
in_channels, out_channels, 1, stride=stride, eps=1e-8, padding=config.global_padding |
|
) |
|
self.norm = ( |
|
nn.Identity() |
|
if preact |
|
else BitGroupNormActivation(config, num_channels=out_channels, apply_activation=False) |
|
) |
|
|
|
def forward(self, x): |
|
return self.norm(self.conv(x)) |
|
|
|
|
|
class BitStage(nn.Module): |
|
""" |
|
A ResNet v2 stage composed by stacked layers. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
config, |
|
in_channels, |
|
out_channels, |
|
stride, |
|
dilation, |
|
depth, |
|
bottle_ratio=0.25, |
|
layer_dropout=None, |
|
): |
|
super().__init__() |
|
|
|
first_dilation = 1 if dilation in (1, 2) else 2 |
|
|
|
|
|
if config.layer_type == "bottleneck": |
|
layer_cls = BitBottleneckLayer |
|
else: |
|
layer_cls = BitPreActivationBottleneckLayer |
|
|
|
prev_chs = in_channels |
|
self.layers = nn.Sequential() |
|
for layer_idx in range(depth): |
|
|
|
stride, drop_path_rate, is_first_layer = self._get_updated_hyperparameters( |
|
layer_idx, stride, layer_dropout |
|
) |
|
|
|
self.layers.add_module( |
|
str(layer_idx), |
|
layer_cls( |
|
config, |
|
prev_chs, |
|
out_channels, |
|
stride=stride, |
|
dilation=dilation, |
|
bottle_ratio=bottle_ratio, |
|
first_dilation=first_dilation, |
|
drop_path_rate=drop_path_rate, |
|
is_first_layer=is_first_layer, |
|
), |
|
) |
|
prev_chs = out_channels |
|
first_dilation = dilation |
|
|
|
def _get_updated_hyperparameters(self, layer_idx, stride, layer_dropout): |
|
r""" |
|
Get the new hyper-parameters with respect to the previous ones and the index of the current layer. |
|
""" |
|
if layer_dropout: |
|
drop_path_rate = layer_dropout[layer_idx] |
|
else: |
|
drop_path_rate = 0.0 |
|
|
|
if layer_idx != 0: |
|
stride = 1 |
|
|
|
is_first_layer = layer_idx == 0 |
|
|
|
return stride, drop_path_rate, is_first_layer |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
hidden_state = input |
|
for _, layer in enumerate(self.layers): |
|
hidden_state = layer(hidden_state) |
|
return hidden_state |
|
|
|
|
|
class BitEncoder(nn.Module): |
|
def __init__(self, config: BitConfig): |
|
super().__init__() |
|
self.stages = nn.ModuleList([]) |
|
|
|
prev_chs = config.embedding_size |
|
|
|
|
|
current_stride = 4 |
|
dilation = 1 |
|
|
|
layer_dropouts = [ |
|
x.tolist() |
|
for x in torch.Tensor(np.linspace(0, config.drop_path_rate, sum(config.depths))).split(config.depths) |
|
] |
|
|
|
for stage_idx, (current_depth, current_hidden_size, layer_dropout) in enumerate( |
|
zip(config.depths, config.hidden_sizes, layer_dropouts) |
|
): |
|
|
|
out_channels, stride, dilation = self._get_updated_hyperparameters( |
|
stage_idx, current_stride, current_hidden_size, dilation, config |
|
) |
|
|
|
stage = BitStage( |
|
config, |
|
prev_chs, |
|
out_channels, |
|
stride=stride, |
|
dilation=dilation, |
|
depth=current_depth, |
|
layer_dropout=layer_dropout, |
|
) |
|
|
|
prev_chs = out_channels |
|
current_stride *= stride |
|
|
|
self.stages.add_module(str(stage_idx), stage) |
|
|
|
def _get_updated_hyperparameters(self, stage_idx, current_stride, current_hidden_size, dilation, config): |
|
out_channels = make_div(current_hidden_size * config.width_factor) |
|
stride = 1 if stage_idx == 0 else 2 |
|
if current_stride >= config.output_stride: |
|
dilation *= stride |
|
stride = 1 |
|
return out_channels, stride, dilation |
|
|
|
def forward( |
|
self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True |
|
) -> BaseModelOutputWithNoAttention: |
|
hidden_states = () if output_hidden_states else None |
|
|
|
for stage_module in self.stages: |
|
if output_hidden_states: |
|
hidden_states = hidden_states + (hidden_state,) |
|
|
|
hidden_state = stage_module(hidden_state) |
|
|
|
if output_hidden_states: |
|
hidden_states = hidden_states + (hidden_state,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_state, hidden_states] if v is not None) |
|
|
|
return BaseModelOutputWithNoAttention( |
|
last_hidden_state=hidden_state, |
|
hidden_states=hidden_states, |
|
) |
|
|
|
|
|
class BitPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = BitConfig |
|
base_model_prefix = "bit" |
|
main_input_name = "pixel_values" |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Conv2d): |
|
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") |
|
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)): |
|
nn.init.constant_(module.weight, 1) |
|
nn.init.constant_(module.bias, 0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, BitModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
BIT_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it |
|
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters: |
|
config ([`BitConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
BIT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BitImageProcessor.__call__`] |
|
for details. |
|
|
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare BiT model outputting raw features without any specific head on top.", |
|
BIT_START_DOCSTRING, |
|
) |
|
class BitModel(BitPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embedder = BitEmbeddings(config) |
|
|
|
self.encoder = BitEncoder(config) |
|
self.norm = ( |
|
BitGroupNormActivation(config, num_channels=config.hidden_sizes[-1]) |
|
if config.layer_type == "preactivation" |
|
else nn.Identity() |
|
) |
|
|
|
self.pooler = nn.AdaptiveAvgPool2d((1, 1)) |
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPoolingAndNoAttention, |
|
config_class=_CONFIG_FOR_DOC, |
|
modality="vision", |
|
expected_output=_EXPECTED_OUTPUT_SHAPE, |
|
) |
|
def forward( |
|
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None |
|
) -> BaseModelOutputWithPoolingAndNoAttention: |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
embedding_output = self.embedder(pixel_values) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict |
|
) |
|
|
|
last_hidden_state = encoder_outputs[0] |
|
|
|
last_hidden_state = self.norm(last_hidden_state) |
|
|
|
pooled_output = self.pooler(last_hidden_state) |
|
|
|
if not return_dict: |
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndNoAttention( |
|
last_hidden_state=last_hidden_state, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
BiT Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for |
|
ImageNet. |
|
""", |
|
BIT_START_DOCSTRING, |
|
) |
|
class BitForImageClassification(BitPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.bit = BitModel(config) |
|
|
|
self.classifier = nn.Sequential( |
|
nn.Flatten(), |
|
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(), |
|
) |
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_IMAGE_CLASS_CHECKPOINT, |
|
output_type=ImageClassifierOutputWithNoAttention, |
|
config_class=_CONFIG_FOR_DOC, |
|
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, |
|
) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> ImageClassifierOutputWithNoAttention: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) |
|
|
|
pooled_output = outputs.pooler_output if return_dict else outputs[1] |
|
|
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
|
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
BiT backbone, to be used with frameworks like DETR and MaskFormer. |
|
""", |
|
BIT_START_DOCSTRING, |
|
) |
|
class BitBackbone(BitPreTrainedModel, BackboneMixin): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
super()._init_backbone(config) |
|
|
|
self.bit = BitModel(config) |
|
self.num_features = [config.embedding_size] + config.hidden_sizes |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None |
|
) -> BackboneOutput: |
|
""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoImageProcessor, AutoBackbone |
|
>>> import torch |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> processor = AutoImageProcessor.from_pretrained("google/resnetnv2-50") |
|
>>> model = AutoBackbone.from_pretrained("google/resnetnv2-50") |
|
|
|
>>> inputs = processor(image, return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
outputs = self.bit(pixel_values, output_hidden_states=True, return_dict=True) |
|
|
|
hidden_states = outputs.hidden_states |
|
|
|
feature_maps = () |
|
for idx, stage in enumerate(self.stage_names): |
|
if stage in self.out_features: |
|
feature_maps += (hidden_states[idx],) |
|
|
|
if not return_dict: |
|
output = (feature_maps,) |
|
if output_hidden_states: |
|
output += (outputs.hidden_states,) |
|
return output |
|
|
|
return BackboneOutput( |
|
feature_maps=feature_maps, |
|
hidden_states=outputs.hidden_states if output_hidden_states else None, |
|
attentions=None, |
|
) |
|
|