|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch BEiT model.""" |
|
|
|
|
|
import collections.abc |
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from ...activations import ACT2FN |
|
from ...modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPooling, |
|
ImageClassifierOutput, |
|
MaskedLMOutput, |
|
SemanticSegmenterOutput, |
|
) |
|
from ...modeling_utils import PreTrainedModel |
|
from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer |
|
from ...utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_beit import BeitConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CONFIG_FOR_DOC = "BeitConfig" |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "microsoft/beit-base-patch16-224-pt22k" |
|
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768] |
|
|
|
|
|
_IMAGE_CLASS_CHECKPOINT = "microsoft/beit-base-patch16-224" |
|
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" |
|
|
|
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"microsoft/beit-base-patch16-224", |
|
|
|
] |
|
|
|
|
|
@dataclass |
|
class BeitModelOutputWithPooling(BaseModelOutputWithPooling): |
|
""" |
|
Class for outputs of [`BeitModel`]. |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): |
|
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if |
|
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token |
|
will be returned. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of |
|
shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
|
|
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: |
|
""" |
|
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
|
|
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, |
|
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... |
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the |
|
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the |
|
argument. |
|
""" |
|
if drop_prob == 0.0 or not training: |
|
return input |
|
keep_prob = 1 - drop_prob |
|
shape = (input.shape[0],) + (1,) * (input.ndim - 1) |
|
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) |
|
random_tensor.floor_() |
|
output = input.div(keep_prob) * random_tensor |
|
return output |
|
|
|
|
|
class BeitDropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" |
|
|
|
def __init__(self, drop_prob: Optional[float] = None) -> None: |
|
super().__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
return drop_path(hidden_states, self.drop_prob, self.training) |
|
|
|
def extra_repr(self) -> str: |
|
return "p={}".format(self.drop_prob) |
|
|
|
|
|
|
|
|
|
class BeitEmbeddings(nn.Module): |
|
""" |
|
Construct the CLS token, position and patch embeddings. Optionally, also the mask token. |
|
|
|
""" |
|
|
|
def __init__(self, config: BeitConfig) -> None: |
|
super().__init__() |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) |
|
if config.use_mask_token: |
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) |
|
else: |
|
self.mask_token = None |
|
self.patch_embeddings = BeitPatchEmbeddings(config) |
|
num_patches = self.patch_embeddings.num_patches |
|
if config.use_absolute_position_embeddings: |
|
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) |
|
else: |
|
self.position_embeddings = None |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor: |
|
embeddings = self.patch_embeddings(pixel_values) |
|
batch_size, seq_len, _ = embeddings.size() |
|
|
|
cls_tokens = self.cls_token.expand(batch_size, -1, -1) |
|
if bool_masked_pos is not None: |
|
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) |
|
|
|
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) |
|
embeddings = embeddings * (1 - w) + mask_tokens * w |
|
|
|
embeddings = torch.cat((cls_tokens, embeddings), dim=1) |
|
if self.position_embeddings is not None: |
|
embeddings = embeddings + self.position_embeddings |
|
embeddings = self.dropout(embeddings) |
|
|
|
return embeddings |
|
|
|
|
|
class BeitPatchEmbeddings(nn.Module): |
|
""" |
|
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial |
|
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a |
|
Transformer. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
image_size, patch_size = config.image_size, config.patch_size |
|
num_channels, hidden_size = config.num_channels, config.hidden_size |
|
|
|
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) |
|
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) |
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) |
|
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.num_channels = num_channels |
|
self.num_patches = num_patches |
|
self.patch_shape = patch_shape |
|
|
|
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: |
|
batch_size, num_channels, height, width = pixel_values.shape |
|
if num_channels != self.num_channels: |
|
raise ValueError( |
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." |
|
) |
|
if height != self.image_size[0] or width != self.image_size[1]: |
|
raise ValueError( |
|
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." |
|
) |
|
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) |
|
|
|
return embeddings |
|
|
|
|
|
class BeitSelfAttention(nn.Module): |
|
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None: |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " |
|
f"heads {config.num_attention_heads}." |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
if window_size: |
|
self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size) |
|
else: |
|
self.relative_position_bias = None |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(*new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
relative_position_bias: Optional["BeitRelativePositionBias"] = None, |
|
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
|
|
|
|
if self.relative_position_bias is not None: |
|
attention_scores = attention_scores + self.relative_position_bias().unsqueeze(0) |
|
|
|
|
|
if relative_position_bias is not None: |
|
attention_scores = attention_scores + relative_position_bias |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
return outputs |
|
|
|
|
|
class BeitSelfOutput(nn.Module): |
|
""" |
|
The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the |
|
layernorm applied before each block. |
|
""" |
|
|
|
def __init__(self, config: BeitConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class BeitAttention(nn.Module): |
|
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None: |
|
super().__init__() |
|
self.attention = BeitSelfAttention(config, window_size=window_size) |
|
self.output = BeitSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.attention.query = prune_linear_layer(self.attention.query, index) |
|
self.attention.key = prune_linear_layer(self.attention.key, index) |
|
self.attention.value = prune_linear_layer(self.attention.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) |
|
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
relative_position_bias: Optional["BeitRelativePositionBias"] = None, |
|
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: |
|
self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias) |
|
|
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
|
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
class BeitIntermediate(nn.Module): |
|
def __init__(self, config: BeitConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class BeitOutput(nn.Module): |
|
def __init__(self, config: BeitConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class BeitLayer(nn.Module): |
|
"""This corresponds to the Block class in the timm implementation.""" |
|
|
|
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0) -> None: |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = BeitAttention(config, window_size=window_size) |
|
self.intermediate = BeitIntermediate(config) |
|
self.output = BeitOutput(config) |
|
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.drop_path = BeitDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() |
|
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
init_values = config.layer_scale_init_value |
|
if init_values > 0: |
|
self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) |
|
self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) |
|
else: |
|
self.lambda_1, self.lambda_2 = None, None |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
relative_position_bias: Optional["BeitRelativePositionBias"] = None, |
|
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: |
|
self_attention_outputs = self.attention( |
|
self.layernorm_before(hidden_states), |
|
head_mask, |
|
output_attentions=output_attentions, |
|
relative_position_bias=relative_position_bias, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
outputs = self_attention_outputs[1:] |
|
|
|
|
|
if self.lambda_1 is not None: |
|
attention_output = self.lambda_1 * attention_output |
|
|
|
|
|
hidden_states = self.drop_path(attention_output) + hidden_states |
|
|
|
|
|
layer_output = self.layernorm_after(hidden_states) |
|
|
|
layer_output = self.intermediate(layer_output) |
|
layer_output = self.output(layer_output) |
|
|
|
if self.lambda_2 is not None: |
|
layer_output = self.lambda_2 * layer_output |
|
|
|
|
|
layer_output = self.drop_path(layer_output) + hidden_states |
|
|
|
outputs = (layer_output,) + outputs |
|
|
|
return outputs |
|
|
|
|
|
class BeitRelativePositionBias(nn.Module): |
|
def __init__(self, config: BeitConfig, window_size: tuple) -> None: |
|
super().__init__() |
|
self.window_size = window_size |
|
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 |
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros(self.num_relative_distance, config.num_attention_heads) |
|
) |
|
|
|
|
|
|
|
coords_h = torch.arange(window_size[0]) |
|
coords_w = torch.arange(window_size[1]) |
|
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += window_size[0] - 1 |
|
relative_coords[:, :, 1] += window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 |
|
relative_position_index = torch.zeros( |
|
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype |
|
) |
|
relative_position_index[1:, 1:] = relative_coords.sum(-1) |
|
relative_position_index[0, 0:] = self.num_relative_distance - 3 |
|
relative_position_index[0:, 0] = self.num_relative_distance - 2 |
|
relative_position_index[0, 0] = self.num_relative_distance - 1 |
|
|
|
self.register_buffer("relative_position_index", relative_position_index, persistent=False) |
|
|
|
def forward(self) -> torch.Tensor: |
|
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1 |
|
) |
|
|
|
return relative_position_bias.permute(2, 0, 1).contiguous() |
|
|
|
|
|
class BeitEncoder(nn.Module): |
|
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None: |
|
super().__init__() |
|
self.config = config |
|
if config.use_shared_relative_position_bias: |
|
self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size) |
|
else: |
|
self.relative_position_bias = None |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] |
|
self.layer = nn.ModuleList( |
|
[ |
|
BeitLayer( |
|
config, |
|
window_size=window_size if config.use_relative_position_bias else None, |
|
drop_path_rate=dpr[i], |
|
) |
|
for i in range(config.num_hidden_layers) |
|
] |
|
) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
) -> Union[tuple, BaseModelOutput]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
layer_head_mask, |
|
) |
|
else: |
|
relative_position_bias = ( |
|
self.relative_position_bias() if self.relative_position_bias is not None else None |
|
) |
|
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
class BeitPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = BeitConfig |
|
base_model_prefix = "beit" |
|
main_input_name = "pixel_values" |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, BeitEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
BEIT_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it |
|
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters: |
|
config ([`BeitConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
BEIT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See |
|
[`BeitImageProcessor.__call__`] for details. |
|
|
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Beit Model transformer outputting raw hidden-states without any specific head on top.", |
|
BEIT_START_DOCSTRING, |
|
) |
|
class BeitModel(BeitPreTrainedModel): |
|
def __init__(self, config: BeitConfig, add_pooling_layer: bool = True) -> None: |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = BeitEmbeddings(config) |
|
self.encoder = BeitEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape) |
|
|
|
self.layernorm = ( |
|
nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
) |
|
self.pooler = BeitPooler(config) if add_pooling_layer else None |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.patch_embeddings |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BeitModelOutputWithPooling, |
|
config_class=_CONFIG_FOR_DOC, |
|
modality="vision", |
|
expected_output=_EXPECTED_OUTPUT_SHAPE, |
|
) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
bool_masked_pos: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[tuple, BeitModelOutputWithPooling]: |
|
r""" |
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): |
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings(pixel_values, bool_masked_pos) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
sequence_output = self.layernorm(sequence_output) |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) |
|
return head_outputs + encoder_outputs[1:] |
|
|
|
return BeitModelOutputWithPooling( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
class BeitPooler(nn.Module): |
|
def __init__(self, config: BeitConfig) -> None: |
|
super().__init__() |
|
self.layernorm = ( |
|
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None |
|
) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
if self.layernorm is not None: |
|
|
|
patch_tokens = hidden_states[:, 1:, :] |
|
pooled_output = self.layernorm(patch_tokens.mean(1)) |
|
else: |
|
|
|
pooled_output = hidden_states[:, 0] |
|
|
|
return pooled_output |
|
|
|
|
|
@add_start_docstrings( |
|
"""Beit Model transformer with a 'language' modeling head on top. BEiT does masked image modeling by predicting |
|
visual tokens of a Vector-Quantize Variational Autoencoder (VQ-VAE), whereas other vision models like ViT and DeiT |
|
predict RGB pixel values. As a result, this class is incompatible with [`AutoModelForMaskedImageModeling`], so you |
|
will need to use [`BeitForMaskedImageModeling`] directly if you wish to do masked image modeling with BEiT.""", |
|
BEIT_START_DOCSTRING, |
|
) |
|
class BeitForMaskedImageModeling(BeitPreTrainedModel): |
|
def __init__(self, config: BeitConfig) -> None: |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.beit = BeitModel(config, add_pooling_layer=False) |
|
|
|
|
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
bool_masked_pos: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[tuple, MaskedLMOutput]: |
|
r""" |
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): |
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). |
|
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
|
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoImageProcessor, BeitForMaskedImageModeling |
|
>>> import torch |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k") |
|
>>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k") |
|
|
|
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 |
|
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values |
|
>>> # create random boolean mask of shape (batch_size, num_patches) |
|
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() |
|
|
|
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) |
|
>>> loss, logits = outputs.loss, outputs.logits |
|
>>> list(logits.shape) |
|
[1, 196, 8192] |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.beit( |
|
pixel_values, |
|
bool_masked_pos=bool_masked_pos, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
sequence_output = self.layernorm(sequence_output) |
|
prediction_scores = self.lm_head(sequence_output[:, 1:]) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(prediction_scores[bool_masked_pos], labels) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[1:] |
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final |
|
hidden states of the patch tokens) e.g. for ImageNet. |
|
""", |
|
BEIT_START_DOCSTRING, |
|
) |
|
class BeitForImageClassification(BeitPreTrainedModel): |
|
def __init__(self, config: BeitConfig) -> None: |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.beit = BeitModel(config, add_pooling_layer=True) |
|
|
|
|
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_IMAGE_CLASS_CHECKPOINT, |
|
output_type=ImageClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, |
|
) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[tuple, ImageClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
outputs = self.beit( |
|
pixel_values, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = outputs.pooler_output if return_dict else outputs[1] |
|
|
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return ImageClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class BeitConvModule(nn.Module): |
|
""" |
|
A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution |
|
layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). |
|
|
|
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: Union[int, Tuple[int, int]], |
|
padding: Union[int, Tuple[int, int], str] = 0, |
|
bias: bool = False, |
|
dilation: Union[int, Tuple[int, int]] = 1, |
|
) -> None: |
|
super().__init__() |
|
self.conv = nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
padding=padding, |
|
bias=bias, |
|
dilation=dilation, |
|
) |
|
self.bn = nn.BatchNorm2d(out_channels) |
|
self.activation = nn.ReLU() |
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor: |
|
output = self.conv(input) |
|
output = self.bn(output) |
|
output = self.activation(output) |
|
|
|
return output |
|
|
|
|
|
class BeitPyramidPoolingBlock(nn.Module): |
|
def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None: |
|
super().__init__() |
|
self.layers = [ |
|
nn.AdaptiveAvgPool2d(pool_scale), |
|
BeitConvModule(in_channels, channels, kernel_size=1), |
|
] |
|
for i, layer in enumerate(self.layers): |
|
self.add_module(str(i), layer) |
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor: |
|
hidden_state = input |
|
for layer in self.layers: |
|
hidden_state = layer(hidden_state) |
|
return hidden_state |
|
|
|
|
|
class BeitPyramidPoolingModule(nn.Module): |
|
""" |
|
Pyramid Pooling Module (PPM) used in PSPNet. |
|
|
|
Args: |
|
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid |
|
Module. |
|
in_channels (int): Input channels. |
|
channels (int): Channels after modules, before conv_seg. |
|
align_corners (bool): align_corners argument of F.interpolate. |
|
|
|
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. |
|
""" |
|
|
|
def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None: |
|
super().__init__() |
|
self.pool_scales = pool_scales |
|
self.align_corners = align_corners |
|
self.in_channels = in_channels |
|
self.channels = channels |
|
self.blocks = [] |
|
for i, pool_scale in enumerate(pool_scales): |
|
block = BeitPyramidPoolingBlock(pool_scale=pool_scale, in_channels=in_channels, channels=channels) |
|
self.blocks.append(block) |
|
self.add_module(str(i), block) |
|
|
|
def forward(self, x: torch.Tensor) -> List[torch.Tensor]: |
|
ppm_outs = [] |
|
for ppm in self.blocks: |
|
ppm_out = ppm(x) |
|
upsampled_ppm_out = nn.functional.interpolate( |
|
ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners |
|
) |
|
ppm_outs.append(upsampled_ppm_out) |
|
return ppm_outs |
|
|
|
|
|
class BeitUperHead(nn.Module): |
|
""" |
|
Unified Perceptual Parsing for Scene Understanding. This head is the implementation of |
|
[UPerNet](https://arxiv.org/abs/1807.10221). |
|
|
|
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. |
|
""" |
|
|
|
def __init__(self, config: BeitConfig) -> None: |
|
super().__init__() |
|
|
|
self.pool_scales = config.pool_scales |
|
self.in_channels = [config.hidden_size] * 4 |
|
self.channels = config.hidden_size |
|
self.align_corners = False |
|
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) |
|
|
|
|
|
self.psp_modules = BeitPyramidPoolingModule( |
|
self.pool_scales, |
|
self.in_channels[-1], |
|
self.channels, |
|
align_corners=self.align_corners, |
|
) |
|
self.bottleneck = BeitConvModule( |
|
self.in_channels[-1] + len(self.pool_scales) * self.channels, |
|
self.channels, |
|
kernel_size=3, |
|
padding=1, |
|
) |
|
|
|
self.lateral_convs = nn.ModuleList() |
|
self.fpn_convs = nn.ModuleList() |
|
for in_channels in self.in_channels[:-1]: |
|
l_conv = BeitConvModule(in_channels, self.channels, kernel_size=1) |
|
fpn_conv = BeitConvModule(self.channels, self.channels, kernel_size=3, padding=1) |
|
self.lateral_convs.append(l_conv) |
|
self.fpn_convs.append(fpn_conv) |
|
|
|
self.fpn_bottleneck = BeitConvModule( |
|
len(self.in_channels) * self.channels, |
|
self.channels, |
|
kernel_size=3, |
|
padding=1, |
|
) |
|
|
|
def psp_forward(self, inputs): |
|
x = inputs[-1] |
|
psp_outs = [x] |
|
psp_outs.extend(self.psp_modules(x)) |
|
psp_outs = torch.cat(psp_outs, dim=1) |
|
output = self.bottleneck(psp_outs) |
|
|
|
return output |
|
|
|
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] |
|
|
|
laterals.append(self.psp_forward(encoder_hidden_states)) |
|
|
|
|
|
used_backbone_levels = len(laterals) |
|
for i in range(used_backbone_levels - 1, 0, -1): |
|
prev_shape = laterals[i - 1].shape[2:] |
|
laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate( |
|
laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners |
|
) |
|
|
|
|
|
fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] |
|
|
|
fpn_outs.append(laterals[-1]) |
|
|
|
for i in range(used_backbone_levels - 1, 0, -1): |
|
fpn_outs[i] = nn.functional.interpolate( |
|
fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners |
|
) |
|
fpn_outs = torch.cat(fpn_outs, dim=1) |
|
output = self.fpn_bottleneck(fpn_outs) |
|
output = self.classifier(output) |
|
|
|
return output |
|
|
|
|
|
class BeitFCNHead(nn.Module): |
|
""" |
|
Fully Convolution Networks for Semantic Segmentation. This head is implemented of |
|
[FCNNet](https://arxiv.org/abs/1411.4038>). |
|
|
|
Args: |
|
config (BeitConfig): Configuration. |
|
in_channels |
|
kernel_size (int): The kernel size for convs in the head. Default: 3. |
|
dilation (int): The dilation rate for convs in the head. Default: 1. |
|
|
|
|
|
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. |
|
""" |
|
|
|
def __init__( |
|
self, config: BeitConfig, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1 |
|
) -> None: |
|
super().__init__() |
|
self.in_channels = config.hidden_size |
|
self.channels = config.auxiliary_channels |
|
self.num_convs = config.auxiliary_num_convs |
|
self.concat_input = config.auxiliary_concat_input |
|
self.in_index = in_index |
|
|
|
conv_padding = (kernel_size // 2) * dilation |
|
convs = [] |
|
convs.append( |
|
BeitConvModule( |
|
self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation |
|
) |
|
) |
|
for i in range(self.num_convs - 1): |
|
convs.append( |
|
BeitConvModule( |
|
self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation |
|
) |
|
) |
|
if self.num_convs == 0: |
|
self.convs = nn.Identity() |
|
else: |
|
self.convs = nn.Sequential(*convs) |
|
if self.concat_input: |
|
self.conv_cat = BeitConvModule( |
|
self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2 |
|
) |
|
|
|
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) |
|
|
|
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
hidden_states = encoder_hidden_states[self.in_index] |
|
output = self.convs(hidden_states) |
|
if self.concat_input: |
|
output = self.conv_cat(torch.cat([hidden_states, output], dim=1)) |
|
output = self.classifier(output) |
|
return output |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Beit Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes. |
|
""", |
|
BEIT_START_DOCSTRING, |
|
) |
|
class BeitForSemanticSegmentation(BeitPreTrainedModel): |
|
def __init__(self, config: BeitConfig) -> None: |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.beit = BeitModel(config, add_pooling_layer=False) |
|
|
|
|
|
self.fpn1 = nn.Sequential( |
|
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), |
|
nn.BatchNorm2d(config.hidden_size), |
|
nn.GELU(), |
|
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), |
|
) |
|
self.fpn2 = nn.Sequential( |
|
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), |
|
) |
|
self.fpn3 = nn.Identity() |
|
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) |
|
|
|
|
|
self.decode_head = BeitUperHead(config) |
|
self.auxiliary_head = BeitFCNHead(config) if config.use_auxiliary_head else None |
|
|
|
|
|
self.post_init() |
|
|
|
def compute_loss(self, logits, auxiliary_logits, labels): |
|
|
|
upsampled_logits = nn.functional.interpolate( |
|
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False |
|
) |
|
if auxiliary_logits is not None: |
|
upsampled_auxiliary_logits = nn.functional.interpolate( |
|
auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False |
|
) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) |
|
main_loss = loss_fct(upsampled_logits, labels) |
|
loss = main_loss |
|
if auxiliary_logits is not None: |
|
auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels) |
|
loss += self.config.auxiliary_loss_weight * auxiliary_loss |
|
|
|
return loss |
|
|
|
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[tuple, SemanticSegmenterOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): |
|
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). |
|
|
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoImageProcessor, BeitForSemanticSegmentation |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-finetuned-ade-640-640") |
|
>>> model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640") |
|
|
|
>>> inputs = image_processor(images=image, return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
>>> # logits are of shape (batch_size, num_labels, height, width) |
|
>>> logits = outputs.logits |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
outputs = self.beit( |
|
pixel_values, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=True, |
|
return_dict=return_dict, |
|
) |
|
|
|
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] |
|
|
|
|
|
|
|
features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices] |
|
batch_size = pixel_values.shape[0] |
|
patch_resolution = self.config.image_size // self.config.patch_size |
|
features = [ |
|
x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features |
|
] |
|
|
|
|
|
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] |
|
for i in range(len(features)): |
|
features[i] = ops[i](features[i]) |
|
|
|
logits = self.decode_head(features) |
|
|
|
auxiliary_logits = None |
|
if self.auxiliary_head is not None: |
|
auxiliary_logits = self.auxiliary_head(features) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.num_labels == 1: |
|
raise ValueError("The number of labels should be greater than one") |
|
else: |
|
loss = self.compute_loss(logits, auxiliary_logits, labels) |
|
|
|
if not return_dict: |
|
if output_hidden_states: |
|
output = (logits,) + outputs[1:] |
|
else: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SemanticSegmenterOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states if output_hidden_states else None, |
|
attentions=outputs.attentions, |
|
) |
|
|