|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, Optional, Tuple |
|
|
|
import flax |
|
import flax.linen as nn |
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze |
|
from flax.linen.attention import dot_product_attention_weights |
|
from flax.traverse_util import flatten_dict, unflatten_dict |
|
from jax import lax |
|
|
|
from ...modeling_flax_outputs import ( |
|
FlaxBaseModelOutput, |
|
FlaxBaseModelOutputWithPooling, |
|
FlaxMaskedLMOutput, |
|
FlaxMultipleChoiceModelOutput, |
|
FlaxQuestionAnsweringModelOutput, |
|
FlaxSequenceClassifierOutput, |
|
FlaxTokenClassifierOutput, |
|
) |
|
from ...modeling_flax_utils import ( |
|
ACT2FN, |
|
FlaxPreTrainedModel, |
|
append_call_sample_docstring, |
|
append_replace_return_docstrings, |
|
overwrite_call_docstring, |
|
) |
|
from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging |
|
from .configuration_albert import AlbertConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "albert-base-v2" |
|
_CONFIG_FOR_DOC = "AlbertConfig" |
|
|
|
|
|
@flax.struct.dataclass |
|
class FlaxAlbertForPreTrainingOutput(ModelOutput): |
|
""" |
|
Output type of [`FlaxAlbertForPreTraining`]. |
|
|
|
Args: |
|
prediction_logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
sop_logits (`jnp.ndarray` of shape `(batch_size, 2)`): |
|
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation |
|
before SoftMax). |
|
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape |
|
`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
prediction_logits: jnp.ndarray = None |
|
sop_logits: jnp.ndarray = None |
|
hidden_states: Optional[Tuple[jnp.ndarray]] = None |
|
attentions: Optional[Tuple[jnp.ndarray]] = None |
|
|
|
|
|
ALBERT_START_DOCSTRING = r""" |
|
|
|
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading, saving and converting weights from PyTorch models) |
|
|
|
This model is also a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) |
|
subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to |
|
general usage and behavior. |
|
|
|
Finally, this model supports inherent JAX features such as: |
|
|
|
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) |
|
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) |
|
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) |
|
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) |
|
|
|
Parameters: |
|
config ([`AlbertConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. |
|
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): |
|
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and |
|
`jax.numpy.bfloat16` (on TPUs). |
|
|
|
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If |
|
specified all the computation will be performed with the given `dtype`. |
|
|
|
**Note that this only specifies the dtype of the computation and does not influence the dtype of model |
|
parameters.** |
|
|
|
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and |
|
[`~FlaxPreTrainedModel.to_bf16`]. |
|
""" |
|
|
|
ALBERT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`numpy.ndarray` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, |
|
1]`: |
|
|
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
position_ids (`numpy.ndarray` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
|
|
""" |
|
|
|
|
|
class FlaxAlbertEmbeddings(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings.""" |
|
|
|
config: AlbertConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.word_embeddings = nn.Embed( |
|
self.config.vocab_size, |
|
self.config.embedding_size, |
|
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), |
|
) |
|
self.position_embeddings = nn.Embed( |
|
self.config.max_position_embeddings, |
|
self.config.embedding_size, |
|
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), |
|
) |
|
self.token_type_embeddings = nn.Embed( |
|
self.config.type_vocab_size, |
|
self.config.embedding_size, |
|
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), |
|
) |
|
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) |
|
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) |
|
|
|
def __call__(self, input_ids, token_type_ids, position_ids, deterministic: bool = True): |
|
|
|
inputs_embeds = self.word_embeddings(input_ids.astype("i4")) |
|
position_embeds = self.position_embeddings(position_ids.astype("i4")) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4")) |
|
|
|
|
|
hidden_states = inputs_embeds + token_type_embeddings + position_embeds |
|
|
|
|
|
hidden_states = self.LayerNorm(hidden_states) |
|
hidden_states = self.dropout(hidden_states, deterministic=deterministic) |
|
return hidden_states |
|
|
|
|
|
class FlaxAlbertSelfAttention(nn.Module): |
|
config: AlbertConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
if self.config.hidden_size % self.config.num_attention_heads != 0: |
|
raise ValueError( |
|
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` " |
|
" : {self.config.num_attention_heads}" |
|
) |
|
|
|
self.query = nn.Dense( |
|
self.config.hidden_size, |
|
dtype=self.dtype, |
|
kernel_init=jax.nn.initializers.normal(self.config.initializer_range), |
|
) |
|
self.key = nn.Dense( |
|
self.config.hidden_size, |
|
dtype=self.dtype, |
|
kernel_init=jax.nn.initializers.normal(self.config.initializer_range), |
|
) |
|
self.value = nn.Dense( |
|
self.config.hidden_size, |
|
dtype=self.dtype, |
|
kernel_init=jax.nn.initializers.normal(self.config.initializer_range), |
|
) |
|
self.dense = nn.Dense( |
|
self.config.hidden_size, |
|
kernel_init=jax.nn.initializers.normal(self.config.initializer_range), |
|
dtype=self.dtype, |
|
) |
|
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) |
|
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) |
|
|
|
def __call__(self, hidden_states, attention_mask, deterministic=True, output_attentions: bool = False): |
|
head_dim = self.config.hidden_size // self.config.num_attention_heads |
|
|
|
query_states = self.query(hidden_states).reshape( |
|
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) |
|
) |
|
value_states = self.value(hidden_states).reshape( |
|
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) |
|
) |
|
key_states = self.key(hidden_states).reshape( |
|
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) |
|
) |
|
|
|
|
|
if attention_mask is not None: |
|
|
|
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) |
|
attention_bias = lax.select( |
|
attention_mask > 0, |
|
jnp.full(attention_mask.shape, 0.0).astype(self.dtype), |
|
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), |
|
) |
|
else: |
|
attention_bias = None |
|
|
|
dropout_rng = None |
|
if not deterministic and self.config.attention_probs_dropout_prob > 0.0: |
|
dropout_rng = self.make_rng("dropout") |
|
|
|
attn_weights = dot_product_attention_weights( |
|
query_states, |
|
key_states, |
|
bias=attention_bias, |
|
dropout_rng=dropout_rng, |
|
dropout_rate=self.config.attention_probs_dropout_prob, |
|
broadcast_dropout=True, |
|
deterministic=deterministic, |
|
dtype=self.dtype, |
|
precision=None, |
|
) |
|
|
|
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) |
|
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) |
|
|
|
projected_attn_output = self.dense(attn_output) |
|
projected_attn_output = self.dropout(projected_attn_output, deterministic=deterministic) |
|
layernormed_attn_output = self.LayerNorm(projected_attn_output + hidden_states) |
|
outputs = (layernormed_attn_output, attn_weights) if output_attentions else (layernormed_attn_output,) |
|
return outputs |
|
|
|
|
|
class FlaxAlbertLayer(nn.Module): |
|
config: AlbertConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.attention = FlaxAlbertSelfAttention(self.config, dtype=self.dtype) |
|
self.ffn = nn.Dense( |
|
self.config.intermediate_size, |
|
kernel_init=jax.nn.initializers.normal(self.config.initializer_range), |
|
dtype=self.dtype, |
|
) |
|
self.activation = ACT2FN[self.config.hidden_act] |
|
self.ffn_output = nn.Dense( |
|
self.config.hidden_size, |
|
kernel_init=jax.nn.initializers.normal(self.config.initializer_range), |
|
dtype=self.dtype, |
|
) |
|
self.full_layer_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) |
|
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) |
|
|
|
def __call__( |
|
self, |
|
hidden_states, |
|
attention_mask, |
|
deterministic: bool = True, |
|
output_attentions: bool = False, |
|
): |
|
attention_outputs = self.attention( |
|
hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions |
|
) |
|
attention_output = attention_outputs[0] |
|
ffn_output = self.ffn(attention_output) |
|
ffn_output = self.activation(ffn_output) |
|
ffn_output = self.ffn_output(ffn_output) |
|
ffn_output = self.dropout(ffn_output, deterministic=deterministic) |
|
hidden_states = self.full_layer_layer_norm(ffn_output + attention_output) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (attention_outputs[1],) |
|
return outputs |
|
|
|
|
|
class FlaxAlbertLayerCollection(nn.Module): |
|
config: AlbertConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.layers = [ |
|
FlaxAlbertLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.inner_group_num) |
|
] |
|
|
|
def __call__( |
|
self, |
|
hidden_states, |
|
attention_mask, |
|
deterministic: bool = True, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
): |
|
layer_hidden_states = () |
|
layer_attentions = () |
|
|
|
for layer_index, albert_layer in enumerate(self.layers): |
|
layer_output = albert_layer( |
|
hidden_states, |
|
attention_mask, |
|
deterministic=deterministic, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = layer_output[0] |
|
|
|
if output_attentions: |
|
layer_attentions = layer_attentions + (layer_output[1],) |
|
|
|
if output_hidden_states: |
|
layer_hidden_states = layer_hidden_states + (hidden_states,) |
|
|
|
outputs = (hidden_states,) |
|
if output_hidden_states: |
|
outputs = outputs + (layer_hidden_states,) |
|
if output_attentions: |
|
outputs = outputs + (layer_attentions,) |
|
return outputs |
|
|
|
|
|
class FlaxAlbertLayerCollections(nn.Module): |
|
config: AlbertConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
layer_index: Optional[str] = None |
|
|
|
def setup(self): |
|
self.albert_layers = FlaxAlbertLayerCollection(self.config, dtype=self.dtype) |
|
|
|
def __call__( |
|
self, |
|
hidden_states, |
|
attention_mask, |
|
deterministic: bool = True, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
): |
|
outputs = self.albert_layers( |
|
hidden_states, |
|
attention_mask, |
|
deterministic=deterministic, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
return outputs |
|
|
|
|
|
class FlaxAlbertLayerGroups(nn.Module): |
|
config: AlbertConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.layers = [ |
|
FlaxAlbertLayerCollections(self.config, name=str(i), layer_index=str(i), dtype=self.dtype) |
|
for i in range(self.config.num_hidden_groups) |
|
] |
|
|
|
def __call__( |
|
self, |
|
hidden_states, |
|
attention_mask, |
|
deterministic: bool = True, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
): |
|
all_attentions = () if output_attentions else None |
|
all_hidden_states = (hidden_states,) if output_hidden_states else None |
|
|
|
for i in range(self.config.num_hidden_layers): |
|
|
|
group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups)) |
|
layer_group_output = self.layers[group_idx]( |
|
hidden_states, |
|
attention_mask, |
|
deterministic=deterministic, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
hidden_states = layer_group_output[0] |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + layer_group_output[-1] |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) |
|
return FlaxBaseModelOutput( |
|
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions |
|
) |
|
|
|
|
|
class FlaxAlbertEncoder(nn.Module): |
|
config: AlbertConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.embedding_hidden_mapping_in = nn.Dense( |
|
self.config.hidden_size, |
|
kernel_init=jax.nn.initializers.normal(self.config.initializer_range), |
|
dtype=self.dtype, |
|
) |
|
self.albert_layer_groups = FlaxAlbertLayerGroups(self.config, dtype=self.dtype) |
|
|
|
def __call__( |
|
self, |
|
hidden_states, |
|
attention_mask, |
|
deterministic: bool = True, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
): |
|
hidden_states = self.embedding_hidden_mapping_in(hidden_states) |
|
return self.albert_layer_groups( |
|
hidden_states, |
|
attention_mask, |
|
deterministic=deterministic, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
|
|
|
|
class FlaxAlbertOnlyMLMHead(nn.Module): |
|
config: AlbertConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros |
|
|
|
def setup(self): |
|
self.dense = nn.Dense(self.config.embedding_size, dtype=self.dtype) |
|
self.activation = ACT2FN[self.config.hidden_act] |
|
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) |
|
self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False) |
|
self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,)) |
|
|
|
def __call__(self, hidden_states, shared_embedding=None): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.activation(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states) |
|
|
|
if shared_embedding is not None: |
|
hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) |
|
else: |
|
hidden_states = self.decoder(hidden_states) |
|
|
|
hidden_states += self.bias |
|
return hidden_states |
|
|
|
|
|
class FlaxAlbertSOPHead(nn.Module): |
|
config: AlbertConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.dropout = nn.Dropout(self.config.classifier_dropout_prob) |
|
self.classifier = nn.Dense(2, dtype=self.dtype) |
|
|
|
def __call__(self, pooled_output, deterministic=True): |
|
pooled_output = self.dropout(pooled_output, deterministic=deterministic) |
|
logits = self.classifier(pooled_output) |
|
return logits |
|
|
|
|
|
class FlaxAlbertPreTrainedModel(FlaxPreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = AlbertConfig |
|
base_model_prefix = "albert" |
|
module_class: nn.Module = None |
|
|
|
def __init__( |
|
self, |
|
config: AlbertConfig, |
|
input_shape: Tuple = (1, 1), |
|
seed: int = 0, |
|
dtype: jnp.dtype = jnp.float32, |
|
_do_init: bool = True, |
|
**kwargs, |
|
): |
|
module = self.module_class(config=config, dtype=dtype, **kwargs) |
|
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) |
|
|
|
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: |
|
|
|
input_ids = jnp.zeros(input_shape, dtype="i4") |
|
token_type_ids = jnp.zeros_like(input_ids) |
|
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) |
|
attention_mask = jnp.ones_like(input_ids) |
|
|
|
params_rng, dropout_rng = jax.random.split(rng) |
|
rngs = {"params": params_rng, "dropout": dropout_rng} |
|
|
|
random_params = self.module.init( |
|
rngs, input_ids, attention_mask, token_type_ids, position_ids, return_dict=False |
|
)["params"] |
|
|
|
if params is not None: |
|
random_params = flatten_dict(unfreeze(random_params)) |
|
params = flatten_dict(unfreeze(params)) |
|
for missing_key in self._missing_keys: |
|
params[missing_key] = random_params[missing_key] |
|
self._missing_keys = set() |
|
return freeze(unflatten_dict(params)) |
|
else: |
|
return random_params |
|
|
|
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
def __call__( |
|
self, |
|
input_ids, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
params: dict = None, |
|
dropout_rng: jax.random.PRNGKey = None, |
|
train: bool = False, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.return_dict |
|
|
|
|
|
if token_type_ids is None: |
|
token_type_ids = jnp.zeros_like(input_ids) |
|
|
|
if position_ids is None: |
|
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) |
|
|
|
if attention_mask is None: |
|
attention_mask = jnp.ones_like(input_ids) |
|
|
|
|
|
rngs = {} |
|
if dropout_rng is not None: |
|
rngs["dropout"] = dropout_rng |
|
|
|
return self.module.apply( |
|
{"params": params or self.params}, |
|
jnp.array(input_ids, dtype="i4"), |
|
jnp.array(attention_mask, dtype="i4"), |
|
jnp.array(token_type_ids, dtype="i4"), |
|
jnp.array(position_ids, dtype="i4"), |
|
not train, |
|
output_attentions, |
|
output_hidden_states, |
|
return_dict, |
|
rngs=rngs, |
|
) |
|
|
|
|
|
class FlaxAlbertModule(nn.Module): |
|
config: AlbertConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
add_pooling_layer: bool = True |
|
|
|
def setup(self): |
|
self.embeddings = FlaxAlbertEmbeddings(self.config, dtype=self.dtype) |
|
self.encoder = FlaxAlbertEncoder(self.config, dtype=self.dtype) |
|
if self.add_pooling_layer: |
|
self.pooler = nn.Dense( |
|
self.config.hidden_size, |
|
kernel_init=jax.nn.initializers.normal(self.config.initializer_range), |
|
dtype=self.dtype, |
|
name="pooler", |
|
) |
|
self.pooler_activation = nn.tanh |
|
else: |
|
self.pooler = None |
|
self.pooler_activation = None |
|
|
|
def __call__( |
|
self, |
|
input_ids, |
|
attention_mask, |
|
token_type_ids: Optional[np.ndarray] = None, |
|
position_ids: Optional[np.ndarray] = None, |
|
deterministic: bool = True, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
): |
|
|
|
if token_type_ids is None: |
|
token_type_ids = jnp.zeros_like(input_ids) |
|
|
|
|
|
if position_ids is None: |
|
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) |
|
|
|
hidden_states = self.embeddings(input_ids, token_type_ids, position_ids, deterministic=deterministic) |
|
|
|
outputs = self.encoder( |
|
hidden_states, |
|
attention_mask, |
|
deterministic=deterministic, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = outputs[0] |
|
if self.add_pooling_layer: |
|
pooled = self.pooler(hidden_states[:, 0]) |
|
pooled = self.pooler_activation(pooled) |
|
else: |
|
pooled = None |
|
|
|
if not return_dict: |
|
|
|
if pooled is None: |
|
return (hidden_states,) + outputs[1:] |
|
return (hidden_states, pooled) + outputs[1:] |
|
|
|
return FlaxBaseModelOutputWithPooling( |
|
last_hidden_state=hidden_states, |
|
pooler_output=pooled, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Albert Model transformer outputting raw hidden-states without any specific head on top.", |
|
ALBERT_START_DOCSTRING, |
|
) |
|
class FlaxAlbertModel(FlaxAlbertPreTrainedModel): |
|
module_class = FlaxAlbertModule |
|
|
|
|
|
append_call_sample_docstring(FlaxAlbertModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC) |
|
|
|
|
|
class FlaxAlbertForPreTrainingModule(nn.Module): |
|
config: AlbertConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype) |
|
self.predictions = FlaxAlbertOnlyMLMHead(config=self.config, dtype=self.dtype) |
|
self.sop_classifier = FlaxAlbertSOPHead(config=self.config, dtype=self.dtype) |
|
|
|
def __call__( |
|
self, |
|
input_ids, |
|
attention_mask, |
|
token_type_ids, |
|
position_ids, |
|
deterministic: bool = True, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
): |
|
|
|
outputs = self.albert( |
|
input_ids, |
|
attention_mask, |
|
token_type_ids, |
|
position_ids, |
|
deterministic=deterministic, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
if self.config.tie_word_embeddings: |
|
shared_embedding = self.albert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] |
|
else: |
|
shared_embedding = None |
|
|
|
hidden_states = outputs[0] |
|
pooled_output = outputs[1] |
|
|
|
prediction_scores = self.predictions(hidden_states, shared_embedding=shared_embedding) |
|
sop_scores = self.sop_classifier(pooled_output, deterministic=deterministic) |
|
|
|
if not return_dict: |
|
return (prediction_scores, sop_scores) + outputs[2:] |
|
|
|
return FlaxAlbertForPreTrainingOutput( |
|
prediction_logits=prediction_scores, |
|
sop_logits=sop_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Albert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a |
|
`sentence order prediction (classification)` head. |
|
""", |
|
ALBERT_START_DOCSTRING, |
|
) |
|
class FlaxAlbertForPreTraining(FlaxAlbertPreTrainedModel): |
|
module_class = FlaxAlbertForPreTrainingModule |
|
|
|
|
|
FLAX_ALBERT_FOR_PRETRAINING_DOCSTRING = """ |
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, FlaxAlbertForPreTraining |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2") |
|
>>> model = FlaxAlbertForPreTraining.from_pretrained("albert-base-v2") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> prediction_logits = outputs.prediction_logits |
|
>>> seq_relationship_logits = outputs.sop_logits |
|
``` |
|
""" |
|
|
|
overwrite_call_docstring( |
|
FlaxAlbertForPreTraining, |
|
ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_ALBERT_FOR_PRETRAINING_DOCSTRING, |
|
) |
|
append_replace_return_docstrings( |
|
FlaxAlbertForPreTraining, output_type=FlaxAlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC |
|
) |
|
|
|
|
|
class FlaxAlbertForMaskedLMModule(nn.Module): |
|
config: AlbertConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.albert = FlaxAlbertModule(config=self.config, add_pooling_layer=False, dtype=self.dtype) |
|
self.predictions = FlaxAlbertOnlyMLMHead(config=self.config, dtype=self.dtype) |
|
|
|
def __call__( |
|
self, |
|
input_ids, |
|
attention_mask, |
|
token_type_ids, |
|
position_ids, |
|
deterministic: bool = True, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
): |
|
|
|
outputs = self.albert( |
|
input_ids, |
|
attention_mask, |
|
token_type_ids, |
|
position_ids, |
|
deterministic=deterministic, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if self.config.tie_word_embeddings: |
|
shared_embedding = self.albert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] |
|
else: |
|
shared_embedding = None |
|
|
|
|
|
logits = self.predictions(hidden_states, shared_embedding=shared_embedding) |
|
|
|
if not return_dict: |
|
return (logits,) + outputs[1:] |
|
|
|
return FlaxMaskedLMOutput( |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings("""Albert Model with a `language modeling` head on top.""", ALBERT_START_DOCSTRING) |
|
class FlaxAlbertForMaskedLM(FlaxAlbertPreTrainedModel): |
|
module_class = FlaxAlbertForMaskedLMModule |
|
|
|
|
|
append_call_sample_docstring(FlaxAlbertForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC) |
|
|
|
|
|
class FlaxAlbertForSequenceClassificationModule(nn.Module): |
|
config: AlbertConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype) |
|
classifier_dropout = ( |
|
self.config.classifier_dropout_prob |
|
if self.config.classifier_dropout_prob is not None |
|
else self.config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(rate=classifier_dropout) |
|
self.classifier = nn.Dense( |
|
self.config.num_labels, |
|
dtype=self.dtype, |
|
) |
|
|
|
def __call__( |
|
self, |
|
input_ids, |
|
attention_mask, |
|
token_type_ids, |
|
position_ids, |
|
deterministic: bool = True, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
): |
|
|
|
outputs = self.albert( |
|
input_ids, |
|
attention_mask, |
|
token_type_ids, |
|
position_ids, |
|
deterministic=deterministic, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = outputs[1] |
|
pooled_output = self.dropout(pooled_output, deterministic=deterministic) |
|
logits = self.classifier(pooled_output) |
|
|
|
if not return_dict: |
|
return (logits,) + outputs[2:] |
|
|
|
return FlaxSequenceClassifierOutput( |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled |
|
output) e.g. for GLUE tasks. |
|
""", |
|
ALBERT_START_DOCSTRING, |
|
) |
|
class FlaxAlbertForSequenceClassification(FlaxAlbertPreTrainedModel): |
|
module_class = FlaxAlbertForSequenceClassificationModule |
|
|
|
|
|
append_call_sample_docstring( |
|
FlaxAlbertForSequenceClassification, |
|
_CHECKPOINT_FOR_DOC, |
|
FlaxSequenceClassifierOutput, |
|
_CONFIG_FOR_DOC, |
|
) |
|
|
|
|
|
class FlaxAlbertForMultipleChoiceModule(nn.Module): |
|
config: AlbertConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype) |
|
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) |
|
self.classifier = nn.Dense(1, dtype=self.dtype) |
|
|
|
def __call__( |
|
self, |
|
input_ids, |
|
attention_mask, |
|
token_type_ids, |
|
position_ids, |
|
deterministic: bool = True, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
): |
|
num_choices = input_ids.shape[1] |
|
input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None |
|
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None |
|
token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None |
|
position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None |
|
|
|
|
|
outputs = self.albert( |
|
input_ids, |
|
attention_mask, |
|
token_type_ids, |
|
position_ids, |
|
deterministic=deterministic, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = outputs[1] |
|
pooled_output = self.dropout(pooled_output, deterministic=deterministic) |
|
logits = self.classifier(pooled_output) |
|
|
|
reshaped_logits = logits.reshape(-1, num_choices) |
|
|
|
if not return_dict: |
|
return (reshaped_logits,) + outputs[2:] |
|
|
|
return FlaxMultipleChoiceModelOutput( |
|
logits=reshaped_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Albert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a |
|
softmax) e.g. for RocStories/SWAG tasks. |
|
""", |
|
ALBERT_START_DOCSTRING, |
|
) |
|
class FlaxAlbertForMultipleChoice(FlaxAlbertPreTrainedModel): |
|
module_class = FlaxAlbertForMultipleChoiceModule |
|
|
|
|
|
overwrite_call_docstring( |
|
FlaxAlbertForMultipleChoice, ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") |
|
) |
|
append_call_sample_docstring( |
|
FlaxAlbertForMultipleChoice, |
|
_CHECKPOINT_FOR_DOC, |
|
FlaxMultipleChoiceModelOutput, |
|
_CONFIG_FOR_DOC, |
|
) |
|
|
|
|
|
class FlaxAlbertForTokenClassificationModule(nn.Module): |
|
config: AlbertConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype, add_pooling_layer=False) |
|
classifier_dropout = ( |
|
self.config.classifier_dropout_prob |
|
if self.config.classifier_dropout_prob is not None |
|
else self.config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(rate=classifier_dropout) |
|
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) |
|
|
|
def __call__( |
|
self, |
|
input_ids, |
|
attention_mask, |
|
token_type_ids, |
|
position_ids, |
|
deterministic: bool = True, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
): |
|
|
|
outputs = self.albert( |
|
input_ids, |
|
attention_mask, |
|
token_type_ids, |
|
position_ids, |
|
deterministic=deterministic, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
hidden_states = self.dropout(hidden_states, deterministic=deterministic) |
|
logits = self.classifier(hidden_states) |
|
|
|
if not return_dict: |
|
return (logits,) + outputs[1:] |
|
|
|
return FlaxTokenClassifierOutput( |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Albert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for |
|
Named-Entity-Recognition (NER) tasks. |
|
""", |
|
ALBERT_START_DOCSTRING, |
|
) |
|
class FlaxAlbertForTokenClassification(FlaxAlbertPreTrainedModel): |
|
module_class = FlaxAlbertForTokenClassificationModule |
|
|
|
|
|
append_call_sample_docstring( |
|
FlaxAlbertForTokenClassification, |
|
_CHECKPOINT_FOR_DOC, |
|
FlaxTokenClassifierOutput, |
|
_CONFIG_FOR_DOC, |
|
) |
|
|
|
|
|
class FlaxAlbertForQuestionAnsweringModule(nn.Module): |
|
config: AlbertConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype, add_pooling_layer=False) |
|
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype) |
|
|
|
def __call__( |
|
self, |
|
input_ids, |
|
attention_mask, |
|
token_type_ids, |
|
position_ids, |
|
deterministic: bool = True, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
): |
|
|
|
outputs = self.albert( |
|
input_ids, |
|
attention_mask, |
|
token_type_ids, |
|
position_ids, |
|
deterministic=deterministic, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
|
|
logits = self.qa_outputs(hidden_states) |
|
start_logits, end_logits = logits.split(self.config.num_labels, axis=-1) |
|
start_logits = start_logits.squeeze(-1) |
|
end_logits = end_logits.squeeze(-1) |
|
|
|
if not return_dict: |
|
return (start_logits, end_logits) + outputs[1:] |
|
|
|
return FlaxQuestionAnsweringModelOutput( |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear |
|
layers on top of the hidden-states output to compute `span start logits` and `span end logits`). |
|
""", |
|
ALBERT_START_DOCSTRING, |
|
) |
|
class FlaxAlbertForQuestionAnswering(FlaxAlbertPreTrainedModel): |
|
module_class = FlaxAlbertForQuestionAnsweringModule |
|
|
|
|
|
append_call_sample_docstring( |
|
FlaxAlbertForQuestionAnswering, |
|
_CHECKPOINT_FOR_DOC, |
|
FlaxQuestionAnsweringModelOutput, |
|
_CONFIG_FOR_DOC, |
|
) |
|
|