mart9992's picture
m
4c65bff
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Benchmarking the library on inference and training in PyTorch.
"""
import timeit
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_auto import MODEL_MAPPING, MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_py3nvml_available, is_torch_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_torch_available():
import torch
from .benchmark_args import PyTorchBenchmarkArguments
if is_py3nvml_available():
import py3nvml.py3nvml as nvml
logger = logging.get_logger(__name__)
class PyTorchBenchmark(Benchmark):
args: PyTorchBenchmarkArguments
configs: PretrainedConfig
framework: str = "PyTorch"
@property
def framework_version(self):
return torch.__version__
def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
return self._measure_speed(_inference)
def _inference_memory(
self, model_name: str, batch_size: int, sequence_length: int
) -> [Memory, Optional[MemorySummary]]:
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
return self._measure_memory(_inference)
def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
return self._measure_speed(_train)
def _train_memory(
self, model_name: str, batch_size: int, sequence_length: int
) -> [Memory, Optional[MemorySummary]]:
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
return self._measure_memory(_train)
def _prepare_inference_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
config = self.config_dict[model_name]
if self.args.torchscript:
config.torchscript = True
has_model_class_in_config = (
hasattr(config, "architectures")
and isinstance(config.architectures, list)
and len(config.architectures) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
model_class = config.architectures[0]
transformers_module = __import__("transformers", fromlist=[model_class])
model_cls = getattr(transformers_module, model_class)
model = model_cls(config)
except ImportError:
raise ImportError(
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
" set `--only_pretrain_model` or `args.only_pretrain_model=True`."
)
else:
model = MODEL_MAPPING[config.__class__](config)
model.eval()
model.to(self.args.device)
# encoder-decoder has vocab size saved differently
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
input_ids = torch.randint(vocab_size, (batch_size, sequence_length), dtype=torch.long, device=self.args.device)
if self.args.fp16:
logger.info("Running training in Mixed Precision...")
if not self.args.is_gpu:
raise ValueError("Mixed precision is possible only for GPU.")
# amp seems to have memory leaks so that memory usage
# is measured using .half() for now https://github.com/NVIDIA/apex/issues/439
model.half()
if self.args.torchscript:
with torch.no_grad():
inference_model = torch.jit.trace(model, input_ids)
else:
inference_model = model
def encoder_decoder_forward():
with torch.no_grad():
outputs = inference_model(input_ids, decoder_input_ids=input_ids)
return outputs
def encoder_forward():
with torch.no_grad():
outputs = inference_model(input_ids)
return outputs
_forward = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _forward
def _prepare_train_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
config = self.config_dict[model_name]
has_model_class_in_config = (
hasattr(config, "architectures")
and isinstance(config.architectures, list)
and len(config.architectures) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
model_class = config.architectures[0]
transformers_module = __import__("transformers", fromlist=[model_class])
model_cls = getattr(transformers_module, model_class)
model = model_cls(config)
except ImportError:
raise ImportError(
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
" set `--only_pretrain_model` or `args.only_pretrain_model=True`."
)
else:
model = MODEL_WITH_LM_HEAD_MAPPING[config.__class__](config)
if self.args.torchscript:
raise NotImplementedError("Training for torchscript is currently not implemented")
else:
train_model = model
model.train()
model.to(self.args.device)
# encoder-decoder has vocab size saved differently
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
input_ids = torch.randint(vocab_size, (batch_size, sequence_length), dtype=torch.long, device=self.args.device)
if self.args.fp16:
logger.info("Running training in Mixed Precision...")
if not self.args.is_gpu:
raise ValueError("Mixed precision is possible only for GPU.")
# amp seems to have memory leaks so that memory usage
# is measured using .half() for now https://github.com/NVIDIA/apex/issues/439
model.half()
def compute_loss_and_backprob_encoder():
loss = train_model(input_ids, labels=input_ids)[0]
loss.backward()
return loss
def compute_loss_and_backprob_encoder_decoder():
loss = train_model(input_ids, decoder_input_ids=input_ids, labels=input_ids)[0]
loss.backward()
return loss
_train = (
compute_loss_and_backprob_encoder_decoder
if config.is_encoder_decoder
else compute_loss_and_backprob_encoder
)
return _train
def _measure_speed(self, func) -> float:
try:
if self.args.is_tpu or self.args.torchscript:
# run additional 10 times to stabilize compilation for tpu and torchscript
logger.info("Do inference on TPU or torchscript. Running model 5 times to stabilize compilation")
timeit.repeat(
func,
repeat=1,
number=5,
)
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
runtimes = timeit.repeat(
func,
repeat=self.args.repeat,
number=10,
)
if self.args.is_tpu and self.args.torch_xla_tpu_print_metrics:
import torch_xla.debug.metrics as met
self.print_fn(met.metrics_report())
return min(runtimes) / 10.0
except RuntimeError as e:
self.print_fn(f"Doesn't fit on GPU. {e}")
return "N/A"
def _measure_memory(self, func: Callable[[], None]) -> [Memory, MemorySummary]:
try:
if self.args.trace_memory_line_by_line:
trace = start_memory_tracing("transformers")
if self.args.is_tpu:
# tpu
raise NotImplementedError(
"Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking with"
" `--no-memory` or `args.memory=False`"
)
elif self.args.is_gpu:
if not is_py3nvml_available():
logger.warning(
"py3nvml not installed, we won't log GPU memory usage. "
"Install py3nvml (pip install py3nvml) to log information about GPU."
)
memory = "N/A"
else:
logger.info(
"Measuring total GPU usage on GPU device. Make sure to not have additional processes running"
" on the same GPU."
)
# init nvml
nvml.nvmlInit()
func()
handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx)
meminfo = nvml.nvmlDeviceGetMemoryInfo(handle)
max_bytes_in_use = meminfo.used
memory = Memory(max_bytes_in_use)
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
memory_bytes = measure_peak_memory_cpu(func)
memory = Memory(memory_bytes) if isinstance(memory_bytes, int) else memory_bytes
if self.args.trace_memory_line_by_line:
summary = stop_memory_tracing(trace)
else:
summary = None
return memory, summary
except RuntimeError as e:
self.print_fn(f"Doesn't fit on GPU. {e}")
return "N/A", None