|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" |
|
|
|
import torch |
|
import numpy as np |
|
from . import util |
|
from .wholebody import Wholebody |
|
from .annotatorUtil import resize_image, HWC3 |
|
from PIL import Image |
|
|
|
def draw_pose(pose, H, W): |
|
bodies = pose['bodies'] |
|
faces = pose['faces'] |
|
hands = pose['hands'] |
|
candidate = bodies['candidate'] |
|
subset = bodies['subset'] |
|
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8) |
|
|
|
canvas = util.draw_bodypose(canvas, candidate, subset) |
|
|
|
canvas = util.draw_handpose(canvas, hands) |
|
|
|
canvas = util.draw_facepose(canvas, faces) |
|
|
|
return canvas |
|
|
|
|
|
class DWposeDetector: |
|
def __init__(self): |
|
|
|
self.pose_estimation = Wholebody() |
|
|
|
def __call__(self, oriImg): |
|
oriImg = oriImg.copy() |
|
H, W, C = oriImg.shape |
|
with torch.no_grad(): |
|
candidate, subset = self.pose_estimation(oriImg) |
|
nums, keys, locs = candidate.shape |
|
candidate[..., 0] /= float(W) |
|
candidate[..., 1] /= float(H) |
|
body = candidate[:,:18].copy() |
|
body = body.reshape(nums*18, locs) |
|
score = subset[:,:18] |
|
for i in range(len(score)): |
|
for j in range(len(score[i])): |
|
if score[i][j] > 0.3: |
|
score[i][j] = int(18*i+j) |
|
else: |
|
score[i][j] = -1 |
|
|
|
un_visible = subset<0.3 |
|
candidate[un_visible] = -1 |
|
|
|
foot = candidate[:,18:24] |
|
|
|
faces = candidate[:,24:92] |
|
|
|
hands = candidate[:,92:113] |
|
hands = np.vstack([hands, candidate[:,113:]]) |
|
|
|
bodies = dict(candidate=body, subset=score) |
|
pose = dict(bodies=bodies, hands=hands, faces=faces) |
|
|
|
return draw_pose(pose, H, W) |
|
|
|
|
|
model_dwpose = None |
|
|
|
def dwpose(img, res): |
|
img = np.array(img) |
|
img = resize_image(HWC3(img), res) |
|
global model_dwpose |
|
if model_dwpose is None: |
|
model_dwpose = DWposeDetector() |
|
result = model_dwpose(img) |
|
result_pil = Image.fromarray(np.uint8(result)).convert('RGB') |
|
return result_pil |
|
|