mart9992's picture
m
4c65bff
raw
history blame
6.63 kB
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
#define MIN_VALUE (-1e38)
typedef at::BFloat16 bf16;
__global__ void kernel_forward_bf16(
const int B, const int T, const int C, const float *__restrict__ const _w, const bf16 *__restrict__ const _u,
const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v, bf16 *__restrict__ const _y
) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
float u = float(_u[_c]);
float w = _w[_c];
const bf16 *__restrict__ const k = _k + _offset;
const bf16 *__restrict__ const v = _v + _offset;
bf16 *__restrict__ const y = _y + _offset;
// aa and bb are running sums divided by exp(pp) (to avoid overflow)
float aa = 0, bb = 0, pp = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
const float kk = float(k[ii]);
const float vv = float(v[ii]);
float ww = u + kk;
float p = max(pp, ww);
float e1 = exp(pp - p);
float e2 = exp(ww - p);
y[ii] = bf16((e1 * aa + e2 * vv) / (e1 * bb + e2));
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
}
__global__ void kernel_forward_with_state_bf16(
const int B, const int T, const int C, const float *__restrict__ const _w, const bf16 *__restrict__ const _u,
const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v, bf16 *__restrict__ const _y,
float *__restrict__ const _s
) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset_s = _b * C * 3 + _c * 3;
const int _offset = _b * T * C + _c;
float u = float(_u[_c]);
float w = _w[_c];
const bf16 *__restrict__ const k = _k + _offset;
const bf16 *__restrict__ const v = _v + _offset;
bf16 *__restrict__ const y = _y + _offset;
float *__restrict__ const s = _s + _offset_s;
// aa and bb are running sums divided by exp(pp) (to avoid overflow)
float aa = s[0], bb = s[1], pp = s[2];
for (int i = 0; i < T; i++) {
const int ii = i * C;
const float kk = float(k[ii]);
const float vv = float(v[ii]);
float ww = u + kk;
float p = max(pp, ww);
float e1 = exp(pp - p);
float e2 = exp(ww - p);
y[ii] = bf16(e1 * aa + e2 * vv) / (e1 * bb + e2);
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
s[0] = aa;
s[1] = bb;
s[2] = pp;
}
__global__ void kernel_backward_bf16(
const int B, const int T, const int C, const float *__restrict__ const _w, const bf16 *__restrict__ const _u,
const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v, const bf16 *__restrict__ const _y,
const bf16 *__restrict__ const _gy, bf16 *__restrict__ const _gw, bf16 *__restrict__ const _gu,
bf16 *__restrict__ const _gk, bf16 *__restrict__ const _gv
) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
float u = float(_u[_c]);
float w = _w[_c];
const bf16 *__restrict__ const k = _k + _offset;
const bf16 *__restrict__ const v = _v + _offset;
const bf16 *__restrict__ const y = _y + _offset;
const bf16 *__restrict__ const gy = _gy + _offset;
bf16 *__restrict__ const gk = _gk + _offset;
bf16 *__restrict__ const gv = _gv + _offset;
float q[Tmax], r[Tmax];
float gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
const float kk = float(k[ii]);
const float vv = float(v[ii]);
const float yy = float(y[ii]);
float ww = u + kk;
float p = max(pp, ww);
float e1 = exp(pp - p);
float e2 = exp(ww - p);
const float qq = float(gy[ii]) / (e1 * bb + e2);
gw += (ga - gb * yy) * e1 * qq;
gu += (vv - yy) * e2 * qq;
q[i] = qq;
r[i] = ww - p;
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
ga = e1 * (aa + ga);
gb = e1 * (bb + gb);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
const int _offsetBC = _b * C + _c;
_gw[_offsetBC] = bf16(gw * _w[_c]); // multiply by w because of w -> -exp(w) in python forward()
_gu[_offsetBC] = bf16(gu);
aa = 0, bb = 0, pp = MIN_VALUE;
for (int i = T - 1; i >= 0; i--) {
const int ii = i * C;
const float kk = float(k[ii]);
const float vv = float(v[ii]);
const float yy = float(y[ii]);
const float qq = q[i];
const float rr = r[i];
float e1 = qq * exp(rr);
float e2 = exp(kk + pp);
gk[ii] = bf16(e1 * (vv - yy) + e2 * (aa * vv + bb));
gv[ii] = bf16(e1 + e2 * aa);
const float ww = w + pp;
const float www = rr - u - kk;
const float p = max(ww, www);
e1 = exp(ww - p);
e2 = qq * exp(www - p);
aa = e1 * aa + e2;
bb = e1 * bb - e2 * yy;
pp = p;
}
}
void cuda_forward_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_forward_bf16<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
}
void cuda_forward_with_state_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, float *s) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_forward_with_state_bf16<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, s);
}
void cuda_backward_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_backward_bf16<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv);
}