|
from GroundingDINO.groundingdino.datasets.transforms import Compose, RandomResize, ToTensor, Normalize |
|
from io import BytesIO |
|
import os |
|
import copy |
|
|
|
import numpy as np |
|
import json |
|
import torch |
|
from PIL import Image, ImageDraw, ImageFont |
|
|
|
|
|
import GroundingDINO.groundingdino.datasets.transforms as T |
|
from GroundingDINO.groundingdino.models import build_model |
|
from GroundingDINO.groundingdino.util import box_ops |
|
from GroundingDINO.groundingdino.util.slconfig import SLConfig |
|
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap |
|
|
|
|
|
from segment_anything import ( |
|
build_sam, |
|
build_sam_hq, |
|
SamPredictor |
|
) |
|
import cv2 |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
def load_model(model_config_path, model_checkpoint_path, device): |
|
args = SLConfig.fromfile(model_config_path) |
|
args.device = device |
|
model = build_model(args) |
|
checkpoint = torch.load(model_checkpoint_path, map_location="cpu") |
|
load_res = model.load_state_dict( |
|
clean_state_dict(checkpoint["model"]), strict=False) |
|
print(load_res) |
|
_ = model.eval() |
|
return model |
|
|
|
|
|
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"): |
|
caption = caption.lower() |
|
caption = caption.strip() |
|
if not caption.endswith("."): |
|
caption = caption + "." |
|
model = model.to(device) |
|
image = image.to(device) |
|
with torch.no_grad(): |
|
outputs = model(image[None], captions=[caption]) |
|
logits = outputs["pred_logits"].cpu().sigmoid()[0] |
|
boxes = outputs["pred_boxes"].cpu()[0] |
|
logits.shape[0] |
|
|
|
|
|
logits_filt = logits.clone() |
|
boxes_filt = boxes.clone() |
|
filt_mask = logits_filt.max(dim=1)[0] > box_threshold |
|
logits_filt = logits_filt[filt_mask] |
|
boxes_filt = boxes_filt[filt_mask] |
|
logits_filt.shape[0] |
|
|
|
return boxes_filt |
|
|
|
|
|
def grounded_sam_demo(input_pil, config_file, grounded_checkpoint, sam_checkpoint, |
|
text_prompt, box_threshold=0.3, text_threshold=0.25, |
|
device="cuda"): |
|
|
|
|
|
transform = Compose([ |
|
RandomResize([800], max_size=1333), |
|
ToTensor(), |
|
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
]) |
|
|
|
if input_pil.mode != "RGB": |
|
input_pil = input_pil.convert("RGB") |
|
|
|
image, _ = transform(input_pil, None) |
|
|
|
|
|
model = load_model(config_file, grounded_checkpoint, device=device) |
|
|
|
|
|
boxes_filt = get_grounding_output( |
|
model, image, text_prompt, box_threshold, text_threshold, device=device) |
|
|
|
|
|
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device)) |
|
image = cv2.cvtColor(np.array(input_pil), cv2.COLOR_RGB2BGR) |
|
predictor.set_image(image) |
|
|
|
size = input_pil.size |
|
H, W = size[1], size[0] |
|
for i in range(boxes_filt.size(0)): |
|
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) |
|
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 |
|
boxes_filt[i][2:] += boxes_filt[i][:2] |
|
|
|
boxes_filt = boxes_filt.cpu() |
|
transformed_boxes = predictor.transform.apply_boxes_torch( |
|
boxes_filt, image.shape[:2]).to(device) |
|
|
|
masks, _, _ = predictor.predict_torch( |
|
point_coords=None, |
|
point_labels=None, |
|
boxes=transformed_boxes.to(device), |
|
multimask_output=False, |
|
) |
|
|
|
|
|
value = 0 |
|
mask_img = torch.zeros(masks.shape[-2:]) |
|
for idx, mask in enumerate(masks): |
|
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1 |
|
|
|
fig = plt.figure(figsize=(10, 10)) |
|
plt.imshow(mask_img.numpy()) |
|
plt.axis('off') |
|
|
|
buf = BytesIO() |
|
plt.savefig(buf, format='png', bbox_inches="tight", |
|
dpi=300, pad_inches=0.0) |
|
buf.seek(0) |
|
out_pil = Image.open(buf) |
|
|
|
return out_pil |