nervn / predict.py
mart9992's picture
m
b793f0c
raw
history blame
9.13 kB
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import os
import json
from typing import Any
import numpy as np
import random
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
import cv2
import matplotlib.pyplot as plt
from cog import BasePredictor, Input, Path, BaseModel
from subprocess import call
HOME = os.getcwd()
os.chdir("GroundingDINO")
call("pip install -q .", shell=True)
os.chdir(HOME)
os.chdir("segment_anything")
call("pip install -q .", shell=True)
os.chdir(HOME)
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import (
clean_state_dict,
get_phrases_from_posmap,
)
# segment anything
from segment_anything import build_sam, build_sam_hq, SamPredictor
from ram.models import ram
class ModelOutput(BaseModel):
tags: str
rounding_box_img: Path
masked_img: Path
json_data: Any
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
self.image_size = 384
self.transform = transforms.Compose(
[
transforms.Resize((self.image_size, self.image_size)),
transforms.ToTensor(),
normalize,
]
)
# load model
self.ram_model = ram(
pretrained="pretrained/ram_swin_large_14m.pth",
image_size=self.image_size,
vit="swin_l",
)
self.ram_model.eval()
self.ram_model = self.ram_model.to(self.device)
self.model = load_model(
"GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py",
"pretrained/groundingdino_swint_ogc.pth",
device=self.device,
)
self.sam = SamPredictor(
build_sam(checkpoint="pretrained/sam_vit_h_4b8939.pth").to(self.device)
)
self.sam_hq = SamPredictor(
build_sam_hq(checkpoint="pretrained/sam_hq_vit_h.pth").to(self.device)
)
def predict(
self,
input_image: Path = Input(description="Input image"),
use_sam_hq: bool = Input(
description="Use sam_hq instead of SAM for prediction", default=False
),
) -> ModelOutput:
"""Run a single prediction on the model"""
# default settings
box_threshold = 0.25
text_threshold = 0.2
iou_threshold = 0.5
image_pil, image = load_image(str(input_image))
raw_image = image_pil.resize((self.image_size, self.image_size))
raw_image = self.transform(raw_image).unsqueeze(0).to(self.device)
with torch.no_grad():
tags, tags_chinese = self.ram_model.generate_tag(raw_image)
tags = tags[0].replace(" |", ",")
# run grounding dino model
boxes_filt, scores, pred_phrases = get_grounding_output(
self.model, image, tags, box_threshold, text_threshold, device=self.device
)
predictor = self.sam_hq if use_sam_hq else self.sam
image = cv2.imread(str(input_image))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image)
size = image_pil.size
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
# use NMS to handle overlapped boxes
print(f"Before NMS: {boxes_filt.shape[0]} boxes")
nms_idx = (
torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
)
boxes_filt = boxes_filt[nms_idx]
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
print(f"After NMS: {boxes_filt.shape[0]} boxes")
transformed_boxes = predictor.transform.apply_boxes_torch(
boxes_filt, image.shape[:2]
).to(self.device)
masks, _, _ = predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes.to(self.device),
multimask_output=False,
)
# draw output image
plt.figure(figsize=(10, 10))
for mask in masks:
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
for box, label in zip(boxes_filt, pred_phrases):
show_box(box.numpy(), plt.gca(), label)
rounding_box_path = "/tmp/automatic_label_output.png"
plt.axis("off")
plt.savefig(
Path(rounding_box_path), bbox_inches="tight", dpi=300, pad_inches=0.0
)
plt.close()
# save masks and json data
value = 0 # 0 for background
mask_img = torch.zeros(masks.shape[-2:])
for idx, mask in enumerate(masks):
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
plt.figure(figsize=(10, 10))
plt.imshow(mask_img.numpy())
plt.axis("off")
masks_path = "/tmp/mask.png"
plt.savefig(masks_path, bbox_inches="tight", dpi=300, pad_inches=0.0)
plt.close()
json_data = {
"tags": tags,
"mask": [{"value": value, "label": "background"}],
}
for label, box in zip(pred_phrases, boxes_filt):
value += 1
name, logit = label.split("(")
logit = logit[:-1] # the last is ')'
json_data["mask"].append(
{
"value": value,
"label": name,
"logit": float(logit),
"box": box.numpy().tolist(),
}
)
json_path = "/tmp/label.json"
with open(json_path, "w") as f:
json.dump(json_data, f)
return ModelOutput(
tags=tags,
masked_img=Path(masks_path),
rounding_box_img=Path(rounding_box_path),
json_data=Path(json_path),
)
def get_grounding_output(
model, image, caption, box_threshold, text_threshold, device="cpu"
):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
scores = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(
logit > text_threshold, tokenized, tokenlizer
)
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
scores.append(logit.max().item())
return boxes_filt, torch.Tensor(scores), pred_phrases
def load_image(image_path):
# load image
image_pil = Image.open(image_path).convert("RGB") # load image
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def load_model(model_config_path, model_checkpoint_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(
clean_state_dict(checkpoint["model"]), strict=False
)
print(load_res)
_ = model.eval()
return model
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(
plt.Rectangle((x0, y0), w, h, edgecolor="green", facecolor=(0, 0, 0, 0), lw=1.5)
)
ax.text(x0, y0, label)