|
import cv2 |
|
import numpy as np |
|
import supervision as sv |
|
|
|
import torch |
|
import torchvision |
|
|
|
from groundingdino.util.inference import Model |
|
from segment_anything import SamPredictor |
|
from LightHQSAM.setup_light_hqsam import setup_model |
|
|
|
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
GROUNDING_DINO_CONFIG_PATH = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py" |
|
GROUNDING_DINO_CHECKPOINT_PATH = "./groundingdino_swint_ogc.pth" |
|
|
|
|
|
grounding_dino_model = Model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH) |
|
|
|
|
|
HQSAM_CHECKPOINT_PATH = "./EfficientSAM/sam_hq_vit_tiny.pth" |
|
checkpoint = torch.load(HQSAM_CHECKPOINT_PATH) |
|
light_hqsam = setup_model() |
|
light_hqsam.load_state_dict(checkpoint, strict=True) |
|
light_hqsam.to(device=DEVICE) |
|
|
|
sam_predictor = SamPredictor(light_hqsam) |
|
|
|
|
|
|
|
SOURCE_IMAGE_PATH = "./EfficientSAM/LightHQSAM/example_light_hqsam.png" |
|
CLASSES = ["bench"] |
|
BOX_THRESHOLD = 0.25 |
|
TEXT_THRESHOLD = 0.25 |
|
NMS_THRESHOLD = 0.8 |
|
|
|
|
|
|
|
image = cv2.imread(SOURCE_IMAGE_PATH) |
|
|
|
|
|
detections = grounding_dino_model.predict_with_classes( |
|
image=image, |
|
classes=CLASSES, |
|
box_threshold=BOX_THRESHOLD, |
|
text_threshold=BOX_THRESHOLD |
|
) |
|
|
|
|
|
box_annotator = sv.BoxAnnotator() |
|
labels = [ |
|
f"{CLASSES[class_id]} {confidence:0.2f}" |
|
for _, _, confidence, class_id, _ |
|
in detections] |
|
annotated_frame = box_annotator.annotate(scene=image.copy(), detections=detections, labels=labels) |
|
|
|
|
|
cv2.imwrite("EfficientSAM/LightHQSAM/groundingdino_annotated_image.jpg", annotated_frame) |
|
|
|
|
|
|
|
print(f"Before NMS: {len(detections.xyxy)} boxes") |
|
nms_idx = torchvision.ops.nms( |
|
torch.from_numpy(detections.xyxy), |
|
torch.from_numpy(detections.confidence), |
|
NMS_THRESHOLD |
|
).numpy().tolist() |
|
|
|
detections.xyxy = detections.xyxy[nms_idx] |
|
detections.confidence = detections.confidence[nms_idx] |
|
detections.class_id = detections.class_id[nms_idx] |
|
|
|
print(f"After NMS: {len(detections.xyxy)} boxes") |
|
|
|
|
|
def segment(sam_predictor: SamPredictor, image: np.ndarray, xyxy: np.ndarray) -> np.ndarray: |
|
sam_predictor.set_image(image) |
|
result_masks = [] |
|
for box in xyxy: |
|
masks, scores, logits = sam_predictor.predict( |
|
box=box, |
|
multimask_output=False, |
|
hq_token_only=True, |
|
) |
|
index = np.argmax(scores) |
|
result_masks.append(masks[index]) |
|
return np.array(result_masks) |
|
|
|
|
|
|
|
detections.mask = segment( |
|
sam_predictor=sam_predictor, |
|
image=cv2.cvtColor(image, cv2.COLOR_BGR2RGB), |
|
xyxy=detections.xyxy |
|
) |
|
|
|
|
|
box_annotator = sv.BoxAnnotator() |
|
mask_annotator = sv.MaskAnnotator() |
|
labels = [ |
|
f"{CLASSES[class_id]} {confidence:0.2f}" |
|
for _, _, confidence, class_id, _ |
|
in detections] |
|
annotated_image = mask_annotator.annotate(scene=image.copy(), detections=detections) |
|
annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections, labels=labels) |
|
|
|
|
|
cv2.imwrite("EfficientSAM/LightHQSAM/grounded_light_hqsam_annotated_image.jpg", annotated_image) |
|
|