mart9992's picture
m
aede1d5
import torch.nn as nn
from EdgeSAM.common import LayerNorm2d, UpSampleLayer, OpSequential
__all__ = ['rep_vit_m1', 'rep_vit_m2', 'rep_vit_m3', 'RepViT']
m1_cfgs = [
# k, t, c, SE, HS, s
[3, 2, 48, 1, 0, 1],
[3, 2, 48, 0, 0, 1],
[3, 2, 48, 0, 0, 1],
[3, 2, 96, 0, 0, 2],
[3, 2, 96, 1, 0, 1],
[3, 2, 96, 0, 0, 1],
[3, 2, 96, 0, 0, 1],
[3, 2, 192, 0, 1, 2],
[3, 2, 192, 1, 1, 1],
[3, 2, 192, 0, 1, 1],
[3, 2, 192, 1, 1, 1],
[3, 2, 192, 0, 1, 1],
[3, 2, 192, 1, 1, 1],
[3, 2, 192, 0, 1, 1],
[3, 2, 192, 1, 1, 1],
[3, 2, 192, 0, 1, 1],
[3, 2, 192, 1, 1, 1],
[3, 2, 192, 0, 1, 1],
[3, 2, 192, 1, 1, 1],
[3, 2, 192, 0, 1, 1],
[3, 2, 192, 1, 1, 1],
[3, 2, 192, 0, 1, 1],
[3, 2, 192, 0, 1, 1],
[3, 2, 384, 0, 1, 2],
[3, 2, 384, 1, 1, 1],
[3, 2, 384, 0, 1, 1]
]
m2_cfgs = [
# k, t, c, SE, HS, s
[3, 2, 64, 1, 0, 1],
[3, 2, 64, 0, 0, 1],
[3, 2, 64, 0, 0, 1],
[3, 2, 128, 0, 0, 2],
[3, 2, 128, 1, 0, 1],
[3, 2, 128, 0, 0, 1],
[3, 2, 128, 0, 0, 1],
[3, 2, 256, 0, 1, 2],
[3, 2, 256, 1, 1, 1],
[3, 2, 256, 0, 1, 1],
[3, 2, 256, 1, 1, 1],
[3, 2, 256, 0, 1, 1],
[3, 2, 256, 1, 1, 1],
[3, 2, 256, 0, 1, 1],
[3, 2, 256, 1, 1, 1],
[3, 2, 256, 0, 1, 1],
[3, 2, 256, 1, 1, 1],
[3, 2, 256, 0, 1, 1],
[3, 2, 256, 1, 1, 1],
[3, 2, 256, 0, 1, 1],
[3, 2, 256, 0, 1, 1],
[3, 2, 512, 0, 1, 2],
[3, 2, 512, 1, 1, 1],
[3, 2, 512, 0, 1, 1]
]
m3_cfgs = [
# k, t, c, SE, HS, s
[3, 2, 64, 1, 0, 1],
[3, 2, 64, 0, 0, 1],
[3, 2, 64, 1, 0, 1],
[3, 2, 64, 0, 0, 1],
[3, 2, 64, 0, 0, 1],
[3, 2, 128, 0, 0, 2],
[3, 2, 128, 1, 0, 1],
[3, 2, 128, 0, 0, 1],
[3, 2, 128, 1, 0, 1],
[3, 2, 128, 0, 0, 1],
[3, 2, 128, 0, 0, 1],
[3, 2, 256, 0, 1, 2],
[3, 2, 256, 1, 1, 1],
[3, 2, 256, 0, 1, 1],
[3, 2, 256, 1, 1, 1],
[3, 2, 256, 0, 1, 1],
[3, 2, 256, 1, 1, 1],
[3, 2, 256, 0, 1, 1],
[3, 2, 256, 1, 1, 1],
[3, 2, 256, 0, 1, 1],
[3, 2, 256, 1, 1, 1],
[3, 2, 256, 0, 1, 1],
[3, 2, 256, 1, 1, 1],
[3, 2, 256, 0, 1, 1],
[3, 2, 256, 1, 1, 1],
[3, 2, 256, 0, 1, 1],
[3, 2, 256, 1, 1, 1],
[3, 2, 256, 0, 1, 1],
[3, 2, 256, 1, 1, 1],
[3, 2, 256, 0, 1, 1],
[3, 2, 256, 0, 1, 1],
[3, 2, 512, 0, 1, 2],
[3, 2, 512, 1, 1, 1],
[3, 2, 512, 0, 1, 1]
]
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
from timm.models.layers import SqueezeExcite
import torch
class Conv2d_BN(torch.nn.Sequential):
def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1,
groups=1, bn_weight_init=1, resolution=-10000):
super().__init__()
self.add_module('c', torch.nn.Conv2d(
a, b, ks, stride, pad, dilation, groups, bias=False))
self.add_module('bn', torch.nn.BatchNorm2d(b))
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
torch.nn.init.constant_(self.bn.bias, 0)
@torch.no_grad()
def fuse(self):
c, bn = self._modules.values()
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
w = c.weight * w[:, None, None, None]
b = bn.bias - bn.running_mean * bn.weight / \
(bn.running_var + bn.eps) ** 0.5
m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size(
0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation,
groups=self.c.groups,
device=c.weight.device)
m.weight.data.copy_(w)
m.bias.data.copy_(b)
return m
class Residual(torch.nn.Module):
def __init__(self, m, drop=0.):
super().__init__()
self.m = m
self.drop = drop
def forward(self, x):
if self.training and self.drop > 0:
return x + self.m(x) * torch.rand(x.size(0), 1, 1, 1,
device=x.device).ge_(self.drop).div(1 - self.drop).detach()
else:
return x + self.m(x)
@torch.no_grad()
def fuse(self):
if isinstance(self.m, Conv2d_BN):
m = self.m.fuse()
assert (m.groups == m.in_channels)
identity = torch.ones(m.weight.shape[0], m.weight.shape[1], 1, 1)
identity = torch.nn.functional.pad(identity, [1, 1, 1, 1])
m.weight += identity.to(m.weight.device)
return m
elif isinstance(self.m, torch.nn.Conv2d):
m = self.m
assert (m.groups != m.in_channels)
identity = torch.ones(m.weight.shape[0], m.weight.shape[1], 1, 1)
identity = torch.nn.functional.pad(identity, [1, 1, 1, 1])
m.weight += identity.to(m.weight.device)
return m
else:
return self
class RepVGGDW(torch.nn.Module):
def __init__(self, ed) -> None:
super().__init__()
self.conv = Conv2d_BN(ed, ed, 3, 1, 1, groups=ed)
self.conv1 = Conv2d_BN(ed, ed, 1, 1, 0, groups=ed)
self.dim = ed
def forward(self, x):
return self.conv(x) + self.conv1(x) + x
@torch.no_grad()
def fuse(self):
conv = self.conv.fuse()
conv1 = self.conv1.fuse()
conv_w = conv.weight
conv_b = conv.bias
conv1_w = conv1.weight
conv1_b = conv1.bias
conv1_w = torch.nn.functional.pad(conv1_w, [1, 1, 1, 1])
identity = torch.nn.functional.pad(torch.ones(conv1_w.shape[0], conv1_w.shape[1], 1, 1, device=conv1_w.device),
[1, 1, 1, 1])
final_conv_w = conv_w + conv1_w + identity
final_conv_b = conv_b + conv1_b
conv.weight.data.copy_(final_conv_w)
conv.bias.data.copy_(final_conv_b)
return conv
class RepViTBlock(nn.Module):
def __init__(self, inp, hidden_dim, oup, kernel_size, stride, use_se, use_hs, skip_downsample=False):
super(RepViTBlock, self).__init__()
assert stride in [1, 2]
self.identity = stride == 1 and inp == oup
assert (hidden_dim == 2 * inp)
if stride == 2:
if skip_downsample:
stride = 1
self.token_mixer = nn.Sequential(
Conv2d_BN(inp, inp, kernel_size, stride, (kernel_size - 1) // 2, groups=inp),
SqueezeExcite(inp, 0.25) if use_se else nn.Identity(),
Conv2d_BN(inp, oup, ks=1, stride=1, pad=0)
)
self.channel_mixer = Residual(nn.Sequential(
# pw
Conv2d_BN(oup, 2 * oup, 1, 1, 0),
nn.GELU() if use_hs else nn.GELU(),
# pw-linear
Conv2d_BN(2 * oup, oup, 1, 1, 0, bn_weight_init=0),
))
else:
assert (self.identity)
self.token_mixer = nn.Sequential(
RepVGGDW(inp),
SqueezeExcite(inp, 0.25) if use_se else nn.Identity(),
)
self.channel_mixer = Residual(nn.Sequential(
# pw
Conv2d_BN(inp, hidden_dim, 1, 1, 0),
nn.GELU() if use_hs else nn.GELU(),
# pw-linear
Conv2d_BN(hidden_dim, oup, 1, 1, 0, bn_weight_init=0),
))
def forward(self, x):
return self.channel_mixer(self.token_mixer(x))
from timm.models.vision_transformer import trunc_normal_
class BN_Linear(torch.nn.Sequential):
def __init__(self, a, b, bias=True, std=0.02):
super().__init__()
self.add_module('bn', torch.nn.BatchNorm1d(a))
self.add_module('l', torch.nn.Linear(a, b, bias=bias))
trunc_normal_(self.l.weight, std=std)
if bias:
torch.nn.init.constant_(self.l.bias, 0)
@torch.no_grad()
def fuse(self):
bn, l = self._modules.values()
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
b = bn.bias - self.bn.running_mean * \
self.bn.weight / (bn.running_var + bn.eps) ** 0.5
w = l.weight * w[None, :]
if l.bias is None:
b = b @ self.l.weight.T
else:
b = (l.weight @ b[:, None]).view(-1) + self.l.bias
m = torch.nn.Linear(w.size(1), w.size(0), device=l.weight.device)
m.weight.data.copy_(w)
m.bias.data.copy_(b)
return m
class RepViT(nn.Module):
arch_settings = {
'm1': m1_cfgs,
'm2': m2_cfgs,
'm3': m3_cfgs
}
def __init__(self, arch, img_size=1024, upsample_mode='bicubic'):
super(RepViT, self).__init__()
# setting of inverted residual blocks
self.cfgs = self.arch_settings[arch]
self.img_size = img_size
# building first layer
input_channel = self.cfgs[0][2]
patch_embed = torch.nn.Sequential(Conv2d_BN(3, input_channel // 2, 3, 2, 1), torch.nn.GELU(),
Conv2d_BN(input_channel // 2, input_channel, 3, 2, 1))
layers = [patch_embed]
# building inverted residual blocks
block = RepViTBlock
self.stage_idx = []
prev_c = input_channel
for idx, (k, t, c, use_se, use_hs, s) in enumerate(self.cfgs):
output_channel = _make_divisible(c, 8)
exp_size = _make_divisible(input_channel * t, 8)
skip_downsample = False
if c != prev_c:
self.stage_idx.append(idx - 1)
prev_c = c
layers.append(block(input_channel, exp_size, output_channel, k, s, use_se, use_hs, skip_downsample))
input_channel = output_channel
self.stage_idx.append(idx)
self.features = nn.ModuleList(layers)
stage2_channels = _make_divisible(self.cfgs[self.stage_idx[2]][2], 8)
stage3_channels = _make_divisible(self.cfgs[self.stage_idx[3]][2], 8)
self.fuse_stage2 = nn.Conv2d(stage2_channels, 256, kernel_size=1, bias=False)
self.fuse_stage3 = OpSequential([
nn.Conv2d(stage3_channels, 256, kernel_size=1, bias=False),
UpSampleLayer(factor=2, mode=upsample_mode),
])
self.neck = nn.Sequential(
nn.Conv2d(256, 256, kernel_size=1, bias=False),
LayerNorm2d(256),
nn.Conv2d(256, 256, kernel_size=3, padding=1, bias=False),
LayerNorm2d(256),
)
def forward(self, x):
counter = 0
output_dict = dict()
# patch_embed
x = self.features[0](x)
output_dict['stem'] = x
# stages
for idx, f in enumerate(self.features[1:]):
x = f(x)
if idx in self.stage_idx:
output_dict[f'stage{counter}'] = x
counter += 1
x = self.fuse_stage2(output_dict['stage2']) + self.fuse_stage3(output_dict['stage3'])
x = self.neck(x)
# hack this place because we modified the predictor of SAM for HQ-SAM in
# segment_anything/segment_anything/predictor.py line 91 to return intern features of the backbone
# self.features, self.interm_features = self.model.image_encoder(input_image)
return x, None
def rep_vit_m1(img_size=1024, **kwargs):
return RepViT('m1', img_size, **kwargs)
def rep_vit_m2(img_size=1024, **kwargs):
return RepViT('m2', img_size, **kwargs)
def rep_vit_m3(img_size=1024, **kwargs):
return RepViT('m3', img_size, **kwargs)