upd
Browse files- README.md +37 -37
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +21 -21
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/pytorch_variables.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +5 -4
- results.json +1 -1
README.md
CHANGED
@@ -1,37 +1,37 @@
|
|
1 |
-
---
|
2 |
-
library_name: stable-baselines3
|
3 |
-
tags:
|
4 |
-
- LunarLander-v2
|
5 |
-
- deep-reinforcement-learning
|
6 |
-
- reinforcement-learning
|
7 |
-
- stable-baselines3
|
8 |
-
model-index:
|
9 |
-
- name: PPO
|
10 |
-
results:
|
11 |
-
- task:
|
12 |
-
type: reinforcement-learning
|
13 |
-
name: reinforcement-learning
|
14 |
-
dataset:
|
15 |
-
name: LunarLander-v2
|
16 |
-
type: LunarLander-v2
|
17 |
-
metrics:
|
18 |
-
- type: mean_reward
|
19 |
-
value:
|
20 |
-
name: mean_reward
|
21 |
-
verified: false
|
22 |
-
---
|
23 |
-
|
24 |
-
# **PPO** Agent playing **LunarLander-v2**
|
25 |
-
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
-
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
-
|
28 |
-
## Usage (with Stable-baselines3)
|
29 |
-
TODO: Add your code
|
30 |
-
|
31 |
-
|
32 |
-
```python
|
33 |
-
from stable_baselines3 import ...
|
34 |
-
from huggingface_sb3 import load_from_hub
|
35 |
-
|
36 |
-
...
|
37 |
-
```
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 243.03 +/- 21.60
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x0000028FB1125580>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000028FB1125620>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000028FB11256C0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000028FB1125760>", "_build": "<function ActorCriticPolicy._build at 0x0000028FB1125800>", "forward": "<function ActorCriticPolicy.forward at 0x0000028FB11258A0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x0000028FB1125940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000028FB11259E0>", "_predict": "<function ActorCriticPolicy._predict at 0x0000028FB1125A80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000028FB1125B20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000028FB1125BC0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x0000028FB1125C60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000028FB110B0C0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1734784735695658900, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAACzqQ6+Vn5aP9Obtr2Het6+N+4fvsorpD0AAAAAAAAAANryl73SCBg/w9S5PcUZkr6qRI49ZpPVPAAAAAAAAAAA8zynPSmoR7pyKE27QnYjNr+727ko7ZO1AACAPwAAAACAUbO9romQuhK6irrz+Iw14kiuujTUqDkAAIA/AAAAAJq90jzX67w/4oWmPps1iT5JPKm8Q7pjvQAAAAAAAAAAmpVPvK6NmLpBZBw0hM9bL5cegzrON42zAACAPwAAgD/N3y69TYEJP3KGXz5iLaq+2bCoPAh34zwAAAAAAAAAAAAjMT0sFqg/orzkPYBs5L728B48wqKRPAAAAAAAAAAAzf+avJcCFj4iNyC8//Bjvo0OEL3iW4E8AAAAAAAAAAAaK4u9Pap5uUUr6TrasKo1ARIcu0DMDLoAAIA/AAAAAJoQlrw0Zpa8l60nvMS0tzxShKU9S1aNPQAAgD8AAIA/TQscPkFzNT5/xqu+xMBWvmYPGzvS85G8AAAAAAAAAABNVio9CuYeu3JxBTqG1ok8HmhWPN5lbr0AAIA/AACAP+NSzD4fAFU/0WETvpfzjL5wF1c+IxR0vQAAAAAAAAAAc/G6vYzOrD9ONei+0lTEvn8qDb5VUWS+AAAAAAAAAAAmnpy9p5aRPgqMCzwy2Xa+y1ChvMjIqb0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGOgid8Rcu+MAWyUTegDjAF0lEdAkEw3BHkLhXV9lChoBkdAZYPXRPXTVmgHTegDaAhHQJBOMm1IAfd1fZQoaAZHQGzB14gRsdloB00wAWgIR0CQTyLtNSIhdX2UKGgGR0ByoVHUc4o7aAdNzAJoCEdAkFAP0mMOw3V9lChoBkdAabk54GD+SGgHTegDaAhHQJBQyvbGm1p1fZQoaAZHQGJFs/IKc/doB03oA2gIR0CQUOMOPNmldX2UKGgGR0BwzjpX6qKhaAdNTwFoCEdAkFfyC4Bmw3V9lChoBkdAcN59VFQVK2gHTSQDaAhHQJBYziYLLIR1fZQoaAZHQHAaJeqrBCVoB0v/aAhHQJBZBJK8L8d1fZQoaAZHQG5Tyt/4IrxoB01WAmgIR0CQWSQkona4dX2UKGgGR0BwZeYBvJiiaAdNeAFoCEdAkFlmIj4YanV9lChoBkdAcg7qptJnQWgHTTQBaAhHQJBZ/UVi4KB1fZQoaAZHQHHxXtrsSkFoB00nAWgIR0CQXLtW+49YdX2UKGgGR0Bx9dScbzbwaAdNCAJoCEdAkF5SCFsYVXV9lChoBkdAcVHuHerMkmgHTY8CaAhHQJB5dw1ivxJ1fZQoaAZHQHLPHdweeWhoB02JAWgIR0CQejnvDxb0dX2UKGgGR0BwIcJOWSlnaAdNjQJoCEdAkHra3mV7hXV9lChoBkdAUMNJoTPBzmgHS+NoCEdAkHtluaWonHV9lChoBkdATc+bExZdOmgHS/xoCEdAkHuy+HrQgXV9lChoBkdAaKYcvugHvGgHTegDaAhHQJB71NxlxwR1fZQoaAZHQHHEhagVXV9oB00gAWgIR0CQfb3Tuv2XdX2UKGgGR0Bvf5GjKxLTaAdNKwFoCEdAkH5h37k4m3V9lChoBkdAcGJufmLcbmgHTeICaAhHQJB+g84gieN1fZQoaAZHQGZW1U+9rXVoB03oA2gIR0CQf07EpAlfdX2UKGgGR0BxJEs5GSZCaAdNOwJoCEdAkH+dA5aNdnV9lChoBkdAPP8f7rLQomgHS9NoCEdAkIKQEQoTf3V9lChoBkdAcMhE/SpiqmgHTXoBaAhHQJCEJRNyo4x1fZQoaAZHQHJuip3os7NoB03bAWgIR0CQhDiRnvlVdX2UKGgGR0BxpHDHfdhzaAdNXQFoCEdAkISBESdvsXV9lChoBkdAbA2Yj0L+gmgHTXMDaAhHQJCGQlAu7H11fZQoaAZHQHBu8VYZEUloB01uAWgIR0CQhkj5KvmpdX2UKGgGR0BzKDLjghr4aAdNOwFoCEdAkIanw5NoJ3V9lChoBkdAcTima6STyWgHTR0BaAhHQJCHd8hLXcx1fZQoaAZHQFGHkcS5AhVoB0v7aAhHQJCH6WY4Qz11fZQoaAZHQG2lMlTm4iJoB02mAWgIR0CQiU88La24dX2UKGgGR0BwtL+PzWf9aAdNSwFoCEdAkImYZ/CqInV9lChoBkdAbgPAeJYT02gHTSsBaAhHQJCJykO7QLN1fZQoaAZHQD4V+fAbhm5oB0vhaAhHQJCKNbNbC791fZQoaAZHQBoKUiY9gWtoB0vTaAhHQJCK3EqDsdF1fZQoaAZHQHBPiDRMN+doB03zAWgIR0CQjEAbQ1JldX2UKGgGR0BwtE6V+qioaAdNNgFoCEdAkI4D4k/r0XV9lChoBkdAbf7qzqrzXmgHTU4BaAhHQJCO/Pmgam51fZQoaAZHQEsO/20zCUJoB0vjaAhHQJCQ2jL0SRN1fZQoaAZHQG7Sd0ihWYFoB01QAWgIR0CQkUw+MZP3dX2UKGgGR0Bw9kKZ2IO6aAdNWAJoCEdAkJJZwfhddHV9lChoBkdAcXY8TBZZCGgHTSABaAhHQJCSr5DZ13d1fZQoaAZHQHMcn5WRzRxoB00sAWgIR0CQlZKNQ0oCdX2UKGgGR0Bwi6U5dWyUaAdNwAFoCEdAkJWnaakRBnV9lChoBkdAcbKfXwsoUmgHTWABaAhHQJCV0j7hvR91fZQoaAZHQHJNT4593KVoB00DAWgIR0CQlgf7JnxsdX2UKGgGR0Bly8Lv1DjSaAdN6ANoCEdAkJcxttQ9BHV9lChoBkdAcWTLB9Cu2mgHTdMBaAhHQJCXvJcPe551fZQoaAZHQHDJfBeokzJoB00gAWgIR0CQmR6XSjQBdX2UKGgGR0Btyd1GLDQ7aAdNRQJoCEdAkJzcqvvBrXV9lChoBkdAYHmEIPbwjWgHTegDaAhHQJC5IFlkH2R1fZQoaAZHQG/qI/iYLLJoB00cAmgIR0CQuXU9ZA6ddX2UKGgGR0BBIHjIaLn+aAdL8WgIR0CQuoNtqHoHdX2UKGgGR0BSWE56t1ZDaAdL/GgIR0CQuuHJcPe6dX2UKGgGR0BvRKE384xUaAdNVwFoCEdAkLuTpX6qKnV9lChoBkdAcZ3VGTcIq2gHTdEBaAhHQJC8x6C17Y11fZQoaAZHQHCm0y57PY5oB00DAWgIR0CQvpD4xk/bdX2UKGgGR0BuDLG7z06HaAdNVAFoCEdAkL6aMNtqH3V9lChoBkdAcJaR+jM3ZWgHTa0BaAhHQJC/Bl8PWhB1fZQoaAZHQHF1OjynUDxoB01IAWgIR0CQv66kqMFVdX2UKGgGR0BxQ2RPoFFEaAdNCgJoCEdAkMC/6j323HV9lChoBkdARr+hwl0HQmgHS8loCEdAkMD9e6ZpjHV9lChoBkdATwtsLv1DjWgHS9doCEdAkMKmWMS9NHV9lChoBkdAbxpfReC04WgHTQcBaAhHQJDDAiosI3R1fZQoaAZHQHOJm0/nnuBoB03AAWgIR0CQw8bs4T9LdX2UKGgGR0BTgUse4kNXaAdL/mgIR0CQxHiMo+fRdX2UKGgGR0ByL8TDfm9yaAdL92gIR0CQxLlLeyiVdX2UKGgGR0BumEJUo8ZDaAdNZwFoCEdAkMWRmPHT7XV9lChoBkdAZ8W3o9s7+2gHTegDaAhHQJDGINb1RLt1fZQoaAZHQHESLcCYCyRoB00gAWgIR0CQyRj1PFefdX2UKGgGR0Bwe0yyleniaAdNWQFoCEdAkMlZFgDzRXV9lChoBkdAbGdt65XlsGgHTUkBaAhHQJDLL+PzWf91fZQoaAZHQHODvCMxXXBoB01DAWgIR0CQy8Y3vQWvdX2UKGgGR0BMUobGWD6FaAdLy2gIR0CQzEGYa5wwdX2UKGgGR0BwSKruIAOsaAdNOAFoCEdAkMxJyZKFqXV9lChoBkdAbyTbeMyaeGgHTU0BaAhHQJDPqy7f51x1fZQoaAZHQG9g3UhFEzBoB000AWgIR0CQz9MSsbNsdX2UKGgGR0By4Nhc7hegaAdNDgFoCEdAkNDcGTs6aXV9lChoBkdAcVxiudPLxWgHTT4BaAhHQJDQ5dhRZU11fZQoaAZHQHMWpntfG+9oB03cAWgIR0CQ0OyBTXJ6dX2UKGgGR0BksE7dSEUTaAdN6ANoCEdAkNOMX7+DOHV9lChoBkdAcgI4xDb8FmgHTb4BaAhHQJDUJz0Yj0N1fZQoaAZHQEUYINVinYRoB0vaaAhHQJDU9J2+wkh1fZQoaAZHQHFIBXbM5fdoB01RAWgIR0CQ1oaB7NSqdX2UKGgGR0BytLuPV/c4aAdNtgFoCEdAkNbHRXwLE3V9lChoBkdAZ51m5lOGkGgHTegDaAhHQJDX1qFh5Pd1fZQoaAZHQG6L5Qgs9SxoB01pAWgIR0CQ2e9nbqQjdX2UKGgGR0BwPrNKRMewaAdNXQFoCEdAkNoditq59XV9lChoBkdAcaKQeV9nb2gHTbIBaAhHQJDa971Iy0t1fZQoaAZHQHFFmVAzHjpoB0v/aAhHQJDbG5lOGj91fZQoaAZHQHFVror4FidoB01+AWgIR0CQ28Iy0rsjdX2UKGgGR0Bx7lZZB9kSaAdNKAFoCEdAkNxRzFMqSXV9lChoBkdAbq3Sa3I+4mgHTXABaAhHQJDdv8hs67x1fZQoaAZHQHJJ0LhJiAloB00TAWgIR0CQ3tvWYnfEdX2UKGgGR0ByHaFev6j4aAdNeQFoCEdAkN86PGQ0XXV9lChoBkdAcJtCeEqUeWgHTRQBaAhHQJDfwQYk3S91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGpjOlxVc2Vyc1xyaWVtYVxBcHBEYXRhXExvY2FsXFByb2dyYW1zXFB5dGhvblxQeXRob24zMTFcTGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoGIwEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGpjOlxVc2Vyc1xyaWVtYVxBcHBEYXRhXExvY2FsXFByb2dyYW1zXFB5dGhvblxQeXRob24zMTFcTGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoGIwEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Windows-10-10.0.26100-SP0 10.0.26100", "Python": "3.11.9", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb279ec2200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb279ec2290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb279ec2320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb279ec23b0>", "_build": "<function ActorCriticPolicy._build at 0x7fb279ec2440>", "forward": "<function ActorCriticPolicy.forward at 0x7fb279ec24d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb279ec2560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb279ec25f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb279ec2680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb279ec2710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb279ec27a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb279ec2830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb279e52980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1734799914862897651, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD6mrw9+SS7UuoMO5+vqTy/Nlu8FDKRPQAAgD8AAIA/sxsYPSkMerpkyY27RKrQtneJCLuVtaU6AACAPwAAgD+ak9e8FLSDuogL3zqhYSU2EEmaOkt7ALoAAIA/AACAP2ZXRL2Pahu6hqkDOalTozOxpoG7MI4ZuAAAgD8AAIA/M3jJvPZcc7qy7QQ8/Hy5NR9HQDuHvbc0AACAPwAAgD8zO4o8CJLlPhgR973pho++Pz4Xvb1mT70AAAAAAAAAAObogr0pQGG6EnqdumCPhLUvxNM6+wm1OQAAgD8AAIA/TW4Cva6nmbgDlOs2MtMNMtAkmTvYchC2AACAPwAAgD9NIjY9rsGauop54jrmjYI1P1hCOtZ7AroAAIA/AACAP9rug71XpMI/fZLEvjz61T0I4QO9vsjavQAAAAAAAAAADRmJPSk8brpuW3o7QD2itTzx/TqmmJK6AACAPwAAgD9maoE8j0YVukgU1rt24eK1g29NOzacTzUAAIA/AACAP5oZ9jkUZIK6akQuupDJjjWQLZ06LgpHOQAAgD8AAIA/AKTVO9ezCrnXxry7tlAnth/FWTo+5po1AACAPwAAgD/NNFC8XO9hurYnpbl7gKO2jPULu1q7vTgAAIA/AACAPzOj07opbHq6/l2qukdHRLXSIiK7rO6wNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGSFUJOWSlqMAWyUTegDjAF0lEdAkoJPdZaFEnV9lChoBkdAYxmTN+so2GgHTegDaAhHQJKH6vB7/n51fZQoaAZHQGR2NYKYzBRoB03oA2gIR0CSiRtmcvugdX2UKGgGR0BhK/NiYsunaAdN6ANoCEdAkouGfTTfBXV9lChoBkdAYtu5R0lqrWgHTegDaAhHQJKMQIu5BkZ1fZQoaAZHQGI7pd0JWvNoB03oA2gIR0CSkPPD50r9dX2UKGgGR0BlqlEb5uZUaAdN6ANoCEdAkpHSrHU+cHV9lChoBkdAN+KLKmsNlWgHTR4BaAhHQJKSVe3QUpN1fZQoaAZHQGVC1Iqbz9VoB03oA2gIR0CSk4JSzgMudX2UKGgGR0BmoAXhwVCYaAdN6ANoCEdAkphPub7TD3V9lChoBkdARtwkJKJ2uGgHS/VoCEdAkpjIZIg/1XV9lChoBkdAYfWYHgP3BmgHTegDaAhHQJKdGIYWLxZ1fZQoaAZHQGbzSowVTJhoB03oA2gIR0CSn1BzmwJPdX2UKGgGR0BlHvCbc45taAdN6ANoCEdAkqakIC2c8XV9lChoBkdAZJcmygPEsWgHTegDaAhHQJKnvQswtap1fZQoaAZHQGJXq0dBBzFoB03oA2gIR0CSuzMPz4DcdX2UKGgGR0BjQHNHH3lCaAdN6ANoCEdAksFseKbay3V9lChoBkdAW6biOvMbFWgHTegDaAhHQJLC52GIsRR1fZQoaAZHQE36TCcf/3poB0vuaAhHQJLHeYF7laN1fZQoaAZHQGBfi3gDRtxoB03oA2gIR0CS2y+so2GZdX2UKGgGR0BdIN8eCCjDaAdN6ANoCEdAktyM4LkS3HV9lChoBkdAYbJEy+HrQmgHTegDaAhHQJLfcpSaVlh1fZQoaAZHQGMYh9kSVW1oB03oA2gIR0CS5fJ1aGHpdX2UKGgGR0Bf9Sml67d0aAdN6ANoCEdAkubokeIVM3V9lChoBkdAXtubSZ0CBGgHTegDaAhHQJLnjJjlPrR1fZQoaAZHQGSDMrNGEwpoB03oA2gIR0CS6PinpB5YdX2UKGgGR0Bnwx1HOKO1aAdN6ANoCEdAku32DUVi4XV9lChoBkdAYxwKl54W12gHTegDaAhHQJLuW8Empl11fZQoaAZHQGVqIlMRHwxoB03oA2gIR0CS8dgPVd5ZdX2UKGgGR0BiH+rKeTV2aAdN6ANoCEdAkvN3OObRW3V9lChoBkdAQclYdQwbl2gHTQYBaAhHQJL3VlNDc/N1fZQoaAZHQGHB6FuejEhoB03oA2gIR0CS+mKU3XI2dX2UKGgGR0BfEdMPBi1BaAdN6ANoCEdAkvwA3HaN/HV9lChoBkdAY7xdO6/Zd2gHTegDaAhHQJMWcTXarWB1fZQoaAZHQGLs5BTn7pFoB03oA2gIR0CTF9mFrVOLdX2UKGgGR0Bhv4lhPTG6aAdN6ANoCEdAkxvtdmg8KXV9lChoBkdAO43+dbxEv2gHS/loCEdAkyb83AEdNnV9lChoBkdAZYWh5gPVeGgHTegDaAhHQJMq3P1L8Jl1fZQoaAZHQGePUuDjBEdoB03oA2gIR0CTLBalk6LgdX2UKGgGR0BkBugpSaVlaAdN6ANoCEdAky7U2DQJHHV9lChoBkdAZEtx+8XenGgHTegDaAhHQJM2t/0/W2B1fZQoaAZHQGXgf/WDpTxoB03oA2gIR0CTOBeUY8+zdX2UKGgGR0BlzXoHLRrraAdN6ANoCEdAkzj7pmmLtXV9lChoBkdAYVwanaWX1WgHTegDaAhHQJNBOFTNt651fZQoaAZHQGSY8KPXCj1oB03oA2gIR0CTQZ4FzMibdX2UKGgGR0BjMpGMGX5WaAdN6ANoCEdAk0VXQUpNK3V9lChoBkdAY7u8FINEw2gHTegDaAhHQJNHEmE4//x1fZQoaAZHQGe5d5hScb1oB03oA2gIR0CTS4niNsFddX2UKGgGR0BlHpAUtZmqaAdN6ANoCEdAk07ZLEk0JnV9lChoBkdAaDGADJU5uWgHTegDaAhHQJNQr4+KTB91fZQoaAZHQGZj/y5I6KdoB03oA2gIR0CTaZ8bJfY0dX2UKGgGR0BmWQ4OtnwoaAdN6ANoCEdAk3HLFfiPyXV9lChoBkdAY9aZccENfGgHTegDaAhHQJN+WE7GNrF1fZQoaAZHQGU72h7E5yVoB03oA2gIR0CTgjxKxs2vdX2UKGgGR0BmJORLbpNcaAdN6ANoCEdAk4OUvGp++nV9lChoBkdAYY0h2W6bv2gHTegDaAhHQJOGeBJ7LMd1fZQoaAZHQGAykU9IPLBoB03oA2gIR0CTjVGTs6aLdX2UKGgGR0Bh3tq1w5vMaAdN6ANoCEdAk45XPzFuN3V9lChoBkdAXztWilBQemgHTegDaAhHQJOO/RXwLE11fZQoaAZHQGEuZZbILgJoB03oA2gIR0CTle2Xb/OudX2UKGgGR0BhwnYWcjJNaAdN6ANoCEdAk5Zbc45tFnV9lChoBkdAZEvOuaF23mgHTegDaAhHQJOaYDvE0i11fZQoaAZHQGY4WX9itq5oB03oA2gIR0CTnMG3F1jidX2UKGgGR0BgmnPmgam5aAdN6ANoCEdAk6MtTHbRGHV9lChoBkdAZshsu3+db2gHTegDaAhHQJOnbBP9DQZ1fZQoaAZHQFxqNjLB9CxoB03oA2gIR0CTqSyZa3ZxdX2UKGgGR0BcROiN83MqaAdN6ANoCEdAk8E9CAtnPHV9lChoBkdAYtjP5YYBNmgHTegDaAhHQJPHcxSHdoF1fZQoaAZHQFriOJ+DvmZoB03oA2gIR0CT1s4qgAZLdX2UKGgGR0Bk+quB+WnkaAdN6ANoCEdAk9wNvn8sMHV9lChoBkdAaClO6/ZdwGgHTegDaAhHQJPdaXD3ueB1fZQoaAZHQGZuuTRplBhoB03oA2gIR0CT4Eh1klNUdX2UKGgGR0BeJxPwd8zAaAdN6ANoCEdAk+dKuwHJLnV9lChoBkdAZIsSdOIqLGgHTegDaAhHQJPobxhDw6R1fZQoaAZHQFqVnogV45doB03oA2gIR0CT6RZFXq7idX2UKGgGR0BjJZjtoi9qaAdN6ANoCEdAk+/MUAT7EnV9lChoBkdAZiuCgbp/w2gHTegDaAhHQJPwOADq4Yt1fZQoaAZHQGQPnZkCmuVoB03oA2gIR0CT8+RUFSsKdX2UKGgGR0Bka9ymygPFaAdN6ANoCEdAk/WmjXWe6XV9lChoBkdAY710o0ALiWgHTegDaAhHQJP6DCMxXXB1fZQoaAZHQGHNvUjLSu1oB03oA2gIR0CT/UbC79Q5dX2UKGgGR0BhnqL/CIk7aAdN6ANoCEdAk/7tn003wXV9lChoBkdAR2wpBomG/WgHS/poCEdAlBxCTyJ9A3V9lChoBkdAZHtWzWwu/WgHTegDaAhHQJQcqaF23a11fZQoaAZHQGEYrhzeXRhoB03oA2gIR0CUIZqYJE6UdX2UKGgGR0BMWW+GoJiRaAdNCQFoCEdAlCP4t6HCXXV9lChoBkdAQHBufmLcbmgHTSMBaAhHQJQm8Y1pCa91fZQoaAZHQGXVHCwbEP1oB03oA2gIR0CUK21Iy0rtdX2UKGgGR0BQ6a0IC2c8aAdNGQFoCEdAlCvoiosI3XV9lChoBkdAXSIVqN6w+2gHTegDaAhHQJQueo60Y0l1fZQoaAZHQGAR1fNRm9RoB03oA2gIR0CUL4cjZ+QVdX2UKGgGR0BtLls3yZrpaAdN1wNoCEdAlDDxNRFZxXV9lChoBkdAZugEcKgIyGgHTegDaAhHQJQ4YxM36yl1fZQoaAZHQGCf+umrKeVoB03oA2gIR0CUOa5qdpZfdX2UKGgGR0BgEJqj8DSxaAdN6ANoCEdAlDqMEA5q/XV9lChoBkdAZl2v3ai9I2gHTegDaAhHQJRDuxC6Ymd1fZQoaAZHQGFTjeTFERdoB03oA2gIR0CURDEmICU5dX2UKGgGR0Bi0Ae/5+H8aAdN6ANoCEdAlEfINutOmHV9lChoBkdAYhxw5vLowGgHTegDaAhHQJROJNKyv9t1fZQoaAZHQGDcLkKeCkJoB03oA2gIR0CUWgC2c8T0dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0f96c93d20562d0e55869a674ed099ea650b406c247b11131946aa7ed0f6532
|
3 |
+
size 148016
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,16 +26,16 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
@@ -54,7 +54,7 @@
|
|
54 |
"_n_updates": 248,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
-
":serialized:": "
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
@@ -69,7 +69,7 @@
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
@@ -87,13 +87,13 @@
|
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb279ec2200>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb279ec2290>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb279ec2320>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb279ec23b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb279ec2440>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb279ec24d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb279ec2560>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb279ec25f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb279ec2680>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb279ec2710>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb279ec27a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb279ec2830>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb279e52980>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1734799914862897651,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD6mrw9+SS7UuoMO5+vqTy/Nlu8FDKRPQAAgD8AAIA/sxsYPSkMerpkyY27RKrQtneJCLuVtaU6AACAPwAAgD+ak9e8FLSDuogL3zqhYSU2EEmaOkt7ALoAAIA/AACAP2ZXRL2Pahu6hqkDOalTozOxpoG7MI4ZuAAAgD8AAIA/M3jJvPZcc7qy7QQ8/Hy5NR9HQDuHvbc0AACAPwAAgD8zO4o8CJLlPhgR973pho++Pz4Xvb1mT70AAAAAAAAAAObogr0pQGG6EnqdumCPhLUvxNM6+wm1OQAAgD8AAIA/TW4Cva6nmbgDlOs2MtMNMtAkmTvYchC2AACAPwAAgD9NIjY9rsGauop54jrmjYI1P1hCOtZ7AroAAIA/AACAP9rug71XpMI/fZLEvjz61T0I4QO9vsjavQAAAAAAAAAADRmJPSk8brpuW3o7QD2itTzx/TqmmJK6AACAPwAAgD9maoE8j0YVukgU1rt24eK1g29NOzacTzUAAIA/AACAP5oZ9jkUZIK6akQuupDJjjWQLZ06LgpHOQAAgD8AAIA/AKTVO9ezCrnXxry7tlAnth/FWTo+5po1AACAPwAAgD/NNFC8XO9hurYnpbl7gKO2jPULu1q7vTgAAIA/AACAPzOj07opbHq6/l2qukdHRLXSIiK7rO6wNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGSFUJOWSlqMAWyUTegDjAF0lEdAkoJPdZaFEnV9lChoBkdAYxmTN+so2GgHTegDaAhHQJKH6vB7/n51fZQoaAZHQGR2NYKYzBRoB03oA2gIR0CSiRtmcvugdX2UKGgGR0BhK/NiYsunaAdN6ANoCEdAkouGfTTfBXV9lChoBkdAYtu5R0lqrWgHTegDaAhHQJKMQIu5BkZ1fZQoaAZHQGI7pd0JWvNoB03oA2gIR0CSkPPD50r9dX2UKGgGR0BlqlEb5uZUaAdN6ANoCEdAkpHSrHU+cHV9lChoBkdAN+KLKmsNlWgHTR4BaAhHQJKSVe3QUpN1fZQoaAZHQGVC1Iqbz9VoB03oA2gIR0CSk4JSzgMudX2UKGgGR0BmoAXhwVCYaAdN6ANoCEdAkphPub7TD3V9lChoBkdARtwkJKJ2uGgHS/VoCEdAkpjIZIg/1XV9lChoBkdAYfWYHgP3BmgHTegDaAhHQJKdGIYWLxZ1fZQoaAZHQGbzSowVTJhoB03oA2gIR0CSn1BzmwJPdX2UKGgGR0BlHvCbc45taAdN6ANoCEdAkqakIC2c8XV9lChoBkdAZJcmygPEsWgHTegDaAhHQJKnvQswtap1fZQoaAZHQGJXq0dBBzFoB03oA2gIR0CSuzMPz4DcdX2UKGgGR0BjQHNHH3lCaAdN6ANoCEdAksFseKbay3V9lChoBkdAW6biOvMbFWgHTegDaAhHQJLC52GIsRR1fZQoaAZHQE36TCcf/3poB0vuaAhHQJLHeYF7laN1fZQoaAZHQGBfi3gDRtxoB03oA2gIR0CS2y+so2GZdX2UKGgGR0BdIN8eCCjDaAdN6ANoCEdAktyM4LkS3HV9lChoBkdAYbJEy+HrQmgHTegDaAhHQJLfcpSaVlh1fZQoaAZHQGMYh9kSVW1oB03oA2gIR0CS5fJ1aGHpdX2UKGgGR0Bf9Sml67d0aAdN6ANoCEdAkubokeIVM3V9lChoBkdAXtubSZ0CBGgHTegDaAhHQJLnjJjlPrR1fZQoaAZHQGSDMrNGEwpoB03oA2gIR0CS6PinpB5YdX2UKGgGR0Bnwx1HOKO1aAdN6ANoCEdAku32DUVi4XV9lChoBkdAYxwKl54W12gHTegDaAhHQJLuW8Empl11fZQoaAZHQGVqIlMRHwxoB03oA2gIR0CS8dgPVd5ZdX2UKGgGR0BiH+rKeTV2aAdN6ANoCEdAkvN3OObRW3V9lChoBkdAQclYdQwbl2gHTQYBaAhHQJL3VlNDc/N1fZQoaAZHQGHB6FuejEhoB03oA2gIR0CS+mKU3XI2dX2UKGgGR0BfEdMPBi1BaAdN6ANoCEdAkvwA3HaN/HV9lChoBkdAY7xdO6/Zd2gHTegDaAhHQJMWcTXarWB1fZQoaAZHQGLs5BTn7pFoB03oA2gIR0CTF9mFrVOLdX2UKGgGR0Bhv4lhPTG6aAdN6ANoCEdAkxvtdmg8KXV9lChoBkdAO43+dbxEv2gHS/loCEdAkyb83AEdNnV9lChoBkdAZYWh5gPVeGgHTegDaAhHQJMq3P1L8Jl1fZQoaAZHQGePUuDjBEdoB03oA2gIR0CTLBalk6LgdX2UKGgGR0BkBugpSaVlaAdN6ANoCEdAky7U2DQJHHV9lChoBkdAZEtx+8XenGgHTegDaAhHQJM2t/0/W2B1fZQoaAZHQGXgf/WDpTxoB03oA2gIR0CTOBeUY8+zdX2UKGgGR0BlzXoHLRrraAdN6ANoCEdAkzj7pmmLtXV9lChoBkdAYVwanaWX1WgHTegDaAhHQJNBOFTNt651fZQoaAZHQGSY8KPXCj1oB03oA2gIR0CTQZ4FzMibdX2UKGgGR0BjMpGMGX5WaAdN6ANoCEdAk0VXQUpNK3V9lChoBkdAY7u8FINEw2gHTegDaAhHQJNHEmE4//x1fZQoaAZHQGe5d5hScb1oB03oA2gIR0CTS4niNsFddX2UKGgGR0BlHpAUtZmqaAdN6ANoCEdAk07ZLEk0JnV9lChoBkdAaDGADJU5uWgHTegDaAhHQJNQr4+KTB91fZQoaAZHQGZj/y5I6KdoB03oA2gIR0CTaZ8bJfY0dX2UKGgGR0BmWQ4OtnwoaAdN6ANoCEdAk3HLFfiPyXV9lChoBkdAY9aZccENfGgHTegDaAhHQJN+WE7GNrF1fZQoaAZHQGU72h7E5yVoB03oA2gIR0CTgjxKxs2vdX2UKGgGR0BmJORLbpNcaAdN6ANoCEdAk4OUvGp++nV9lChoBkdAYY0h2W6bv2gHTegDaAhHQJOGeBJ7LMd1fZQoaAZHQGAykU9IPLBoB03oA2gIR0CTjVGTs6aLdX2UKGgGR0Bh3tq1w5vMaAdN6ANoCEdAk45XPzFuN3V9lChoBkdAXztWilBQemgHTegDaAhHQJOO/RXwLE11fZQoaAZHQGEuZZbILgJoB03oA2gIR0CTle2Xb/OudX2UKGgGR0BhwnYWcjJNaAdN6ANoCEdAk5Zbc45tFnV9lChoBkdAZEvOuaF23mgHTegDaAhHQJOaYDvE0i11fZQoaAZHQGY4WX9itq5oB03oA2gIR0CTnMG3F1jidX2UKGgGR0BgmnPmgam5aAdN6ANoCEdAk6MtTHbRGHV9lChoBkdAZshsu3+db2gHTegDaAhHQJOnbBP9DQZ1fZQoaAZHQFxqNjLB9CxoB03oA2gIR0CTqSyZa3ZxdX2UKGgGR0BcROiN83MqaAdN6ANoCEdAk8E9CAtnPHV9lChoBkdAYtjP5YYBNmgHTegDaAhHQJPHcxSHdoF1fZQoaAZHQFriOJ+DvmZoB03oA2gIR0CT1s4qgAZLdX2UKGgGR0Bk+quB+WnkaAdN6ANoCEdAk9wNvn8sMHV9lChoBkdAaClO6/ZdwGgHTegDaAhHQJPdaXD3ueB1fZQoaAZHQGZuuTRplBhoB03oA2gIR0CT4Eh1klNUdX2UKGgGR0BeJxPwd8zAaAdN6ANoCEdAk+dKuwHJLnV9lChoBkdAZIsSdOIqLGgHTegDaAhHQJPobxhDw6R1fZQoaAZHQFqVnogV45doB03oA2gIR0CT6RZFXq7idX2UKGgGR0BjJZjtoi9qaAdN6ANoCEdAk+/MUAT7EnV9lChoBkdAZiuCgbp/w2gHTegDaAhHQJPwOADq4Yt1fZQoaAZHQGQPnZkCmuVoB03oA2gIR0CT8+RUFSsKdX2UKGgGR0Bka9ymygPFaAdN6ANoCEdAk/WmjXWe6XV9lChoBkdAY710o0ALiWgHTegDaAhHQJP6DCMxXXB1fZQoaAZHQGHNvUjLSu1oB03oA2gIR0CT/UbC79Q5dX2UKGgGR0BhnqL/CIk7aAdN6ANoCEdAk/7tn003wXV9lChoBkdAR2wpBomG/WgHS/poCEdAlBxCTyJ9A3V9lChoBkdAZHtWzWwu/WgHTegDaAhHQJQcqaF23a11fZQoaAZHQGEYrhzeXRhoB03oA2gIR0CUIZqYJE6UdX2UKGgGR0BMWW+GoJiRaAdNCQFoCEdAlCP4t6HCXXV9lChoBkdAQHBufmLcbmgHTSMBaAhHQJQm8Y1pCa91fZQoaAZHQGXVHCwbEP1oB03oA2gIR0CUK21Iy0rtdX2UKGgGR0BQ6a0IC2c8aAdNGQFoCEdAlCvoiosI3XV9lChoBkdAXSIVqN6w+2gHTegDaAhHQJQueo60Y0l1fZQoaAZHQGAR1fNRm9RoB03oA2gIR0CUL4cjZ+QVdX2UKGgGR0BtLls3yZrpaAdN1wNoCEdAlDDxNRFZxXV9lChoBkdAZugEcKgIyGgHTegDaAhHQJQ4YxM36yl1fZQoaAZHQGCf+umrKeVoB03oA2gIR0CUOa5qdpZfdX2UKGgGR0BgEJqj8DSxaAdN6ANoCEdAlDqMEA5q/XV9lChoBkdAZl2v3ai9I2gHTegDaAhHQJRDuxC6Ymd1fZQoaAZHQGFTjeTFERdoB03oA2gIR0CURDEmICU5dX2UKGgGR0Bi0Ae/5+H8aAdN6ANoCEdAlEfINutOmHV9lChoBkdAYhxw5vLowGgHTegDaAhHQJROJNKyv9t1fZQoaAZHQGDcLkKeCkJoB03oA2gIR0CUWgC2c8T0dWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
54 |
"_n_updates": 248,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
|
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41b2d3feaf786abe3aadd937e8f5eed79f6dcdb82ccf3c9d6e16b8320240b698
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53e917fd0eb1d7a63b1941ab9005c053342be0ca6f38b9c5831ed3287fca3a01
|
3 |
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 864
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
size 864
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
-
- OS:
|
2 |
-
- Python: 3.
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
-
- PyTorch: 2.5.1+
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy:
|
7 |
- Cloudpickle: 3.1.0
|
8 |
- Gymnasium: 0.28.1
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu121
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
- Cloudpickle: 3.1.0
|
8 |
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 243.02786270000001, "std_reward": 21.597706753398082, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-21T17:26:32.514390"}
|