Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +439 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- dataset_size:10K<n<100K
|
9 |
+
- loss:CosineSimilarityLoss
|
10 |
+
base_model: marrodion/minilm-l12-v2-simple
|
11 |
+
metrics:
|
12 |
+
- pearson_cosine
|
13 |
+
- spearman_cosine
|
14 |
+
- pearson_manhattan
|
15 |
+
- spearman_manhattan
|
16 |
+
- pearson_euclidean
|
17 |
+
- spearman_euclidean
|
18 |
+
- pearson_dot
|
19 |
+
- spearman_dot
|
20 |
+
- pearson_max
|
21 |
+
- spearman_max
|
22 |
+
widget:
|
23 |
+
- source_sentence: Ugly white men*
|
24 |
+
sentences:
|
25 |
+
- fuck black people
|
26 |
+
- That's assuming incels can get enough gbp for tendies.
|
27 |
+
- Happy hari raya puasa (for those who celebrate it)! URL
|
28 |
+
- source_sentence: Burn in hell fag
|
29 |
+
sentences:
|
30 |
+
- What a fucking fag
|
31 |
+
- How do we get rid of radical islamism such as ISIS?
|
32 |
+
- You look beautiful girl. I love your makeup. I'm also a transgender woman
|
33 |
+
- source_sentence: Wtf does he know
|
34 |
+
sentences:
|
35 |
+
- Wtf is Muslim I've never heard this word before in my life
|
36 |
+
- Imagine having a gf. lol what a loser am I right guys
|
37 |
+
- kill yourself you fucking idiot cunt
|
38 |
+
- source_sentence: fuck black people
|
39 |
+
sentences:
|
40 |
+
- fuck her
|
41 |
+
- i'm gay as fuck bring it to the dm's s'il vous plait
|
42 |
+
- Super proud of u priyanka n sidπππ€ππlots of love from india
|
43 |
+
- source_sentence: eradicate the gays
|
44 |
+
sentences:
|
45 |
+
- Anyone who supports ISIS terrorism globally should be eradicated.
|
46 |
+
- This movie was filled with garbage Zionist propaganda.
|
47 |
+
- Super proud of u priyanka n sidπππ€ππlots of love from india
|
48 |
+
pipeline_tag: sentence-similarity
|
49 |
+
model-index:
|
50 |
+
- name: SentenceTransformer based on marrodion/minilm-l12-v2-simple
|
51 |
+
results:
|
52 |
+
- task:
|
53 |
+
type: semantic-similarity
|
54 |
+
name: Semantic Similarity
|
55 |
+
dataset:
|
56 |
+
name: hatespeech sampled dev
|
57 |
+
type: hatespeech-sampled-dev
|
58 |
+
metrics:
|
59 |
+
- type: pearson_cosine
|
60 |
+
value: 0.5824678478663922
|
61 |
+
name: Pearson Cosine
|
62 |
+
- type: spearman_cosine
|
63 |
+
value: 0.4527341031732577
|
64 |
+
name: Spearman Cosine
|
65 |
+
- type: pearson_manhattan
|
66 |
+
value: 0.5684440833162158
|
67 |
+
name: Pearson Manhattan
|
68 |
+
- type: spearman_manhattan
|
69 |
+
value: 0.4501340877013548
|
70 |
+
name: Spearman Manhattan
|
71 |
+
- type: pearson_euclidean
|
72 |
+
value: 0.5699922346841907
|
73 |
+
name: Pearson Euclidean
|
74 |
+
- type: spearman_euclidean
|
75 |
+
value: 0.4527341031732577
|
76 |
+
name: Spearman Euclidean
|
77 |
+
- type: pearson_dot
|
78 |
+
value: 0.5824678270038964
|
79 |
+
name: Pearson Dot
|
80 |
+
- type: spearman_dot
|
81 |
+
value: 0.4527341031732577
|
82 |
+
name: Spearman Dot
|
83 |
+
- type: pearson_max
|
84 |
+
value: 0.5824678478663922
|
85 |
+
name: Pearson Max
|
86 |
+
- type: spearman_max
|
87 |
+
value: 0.4527341031732577
|
88 |
+
name: Spearman Max
|
89 |
+
---
|
90 |
+
|
91 |
+
# SentenceTransformer based on marrodion/minilm-l12-v2-simple
|
92 |
+
|
93 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [marrodion/minilm-l12-v2-simple](https://huggingface.co/marrodion/minilm-l12-v2-simple). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
94 |
+
|
95 |
+
## Model Details
|
96 |
+
|
97 |
+
### Model Description
|
98 |
+
- **Model Type:** Sentence Transformer
|
99 |
+
- **Base model:** [marrodion/minilm-l12-v2-simple](https://huggingface.co/marrodion/minilm-l12-v2-simple) <!-- at revision 04ebcc5b4f811f647374130599adb30be1267455 -->
|
100 |
+
- **Maximum Sequence Length:** 128 tokens
|
101 |
+
- **Output Dimensionality:** 384 tokens
|
102 |
+
- **Similarity Function:** Cosine Similarity
|
103 |
+
<!-- - **Training Dataset:** Unknown -->
|
104 |
+
<!-- - **Language:** Unknown -->
|
105 |
+
<!-- - **License:** Unknown -->
|
106 |
+
|
107 |
+
### Model Sources
|
108 |
+
|
109 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
110 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
111 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
112 |
+
|
113 |
+
### Full Model Architecture
|
114 |
+
|
115 |
+
```
|
116 |
+
SentenceTransformer(
|
117 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
118 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
119 |
+
(2): Normalize()
|
120 |
+
)
|
121 |
+
```
|
122 |
+
|
123 |
+
## Usage
|
124 |
+
|
125 |
+
### Direct Usage (Sentence Transformers)
|
126 |
+
|
127 |
+
First install the Sentence Transformers library:
|
128 |
+
|
129 |
+
```bash
|
130 |
+
pip install -U sentence-transformers
|
131 |
+
```
|
132 |
+
|
133 |
+
Then you can load this model and run inference.
|
134 |
+
```python
|
135 |
+
from sentence_transformers import SentenceTransformer
|
136 |
+
|
137 |
+
# Download from the π€ Hub
|
138 |
+
model = SentenceTransformer("marrodion/minilm-l12-v2-toxic-ft")
|
139 |
+
# Run inference
|
140 |
+
sentences = [
|
141 |
+
'eradicate the gays',
|
142 |
+
'Anyone who supports ISIS terrorism globally should be eradicated.',
|
143 |
+
'This movie was filled with garbage Zionist propaganda.',
|
144 |
+
]
|
145 |
+
embeddings = model.encode(sentences)
|
146 |
+
print(embeddings.shape)
|
147 |
+
# [3, 384]
|
148 |
+
|
149 |
+
# Get the similarity scores for the embeddings
|
150 |
+
similarities = model.similarity(embeddings, embeddings)
|
151 |
+
print(similarities.shape)
|
152 |
+
# [3, 3]
|
153 |
+
```
|
154 |
+
|
155 |
+
<!--
|
156 |
+
### Direct Usage (Transformers)
|
157 |
+
|
158 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
159 |
+
|
160 |
+
</details>
|
161 |
+
-->
|
162 |
+
|
163 |
+
<!--
|
164 |
+
### Downstream Usage (Sentence Transformers)
|
165 |
+
|
166 |
+
You can finetune this model on your own dataset.
|
167 |
+
|
168 |
+
<details><summary>Click to expand</summary>
|
169 |
+
|
170 |
+
</details>
|
171 |
+
-->
|
172 |
+
|
173 |
+
<!--
|
174 |
+
### Out-of-Scope Use
|
175 |
+
|
176 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
177 |
+
-->
|
178 |
+
|
179 |
+
## Evaluation
|
180 |
+
|
181 |
+
### Metrics
|
182 |
+
|
183 |
+
#### Semantic Similarity
|
184 |
+
* Dataset: `hatespeech-sampled-dev`
|
185 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
186 |
+
|
187 |
+
| Metric | Value |
|
188 |
+
|:--------------------|:-----------|
|
189 |
+
| pearson_cosine | 0.5825 |
|
190 |
+
| **spearman_cosine** | **0.4527** |
|
191 |
+
| pearson_manhattan | 0.5684 |
|
192 |
+
| spearman_manhattan | 0.4501 |
|
193 |
+
| pearson_euclidean | 0.57 |
|
194 |
+
| spearman_euclidean | 0.4527 |
|
195 |
+
| pearson_dot | 0.5825 |
|
196 |
+
| spearman_dot | 0.4527 |
|
197 |
+
| pearson_max | 0.5825 |
|
198 |
+
| spearman_max | 0.4527 |
|
199 |
+
|
200 |
+
<!--
|
201 |
+
## Bias, Risks and Limitations
|
202 |
+
|
203 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
204 |
+
-->
|
205 |
+
|
206 |
+
<!--
|
207 |
+
### Recommendations
|
208 |
+
|
209 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
210 |
+
-->
|
211 |
+
|
212 |
+
## Training Details
|
213 |
+
|
214 |
+
### Training Dataset
|
215 |
+
|
216 |
+
#### Unnamed Dataset
|
217 |
+
|
218 |
+
|
219 |
+
* Size: 33,827 training samples
|
220 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
221 |
+
* Approximate statistics based on the first 1000 samples:
|
222 |
+
| | sentence1 | sentence2 | score |
|
223 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
224 |
+
| type | string | string | float |
|
225 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 35.5 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 34.35 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.82</li><li>max: 1.0</li></ul> |
|
226 |
+
* Samples:
|
227 |
+
| sentence1 | sentence2 | score |
|
228 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------|:--------------------------------|
|
229 |
+
| <code>Don't waste good pussy on a trash ass nigga</code> | <code>Stfu obviously trans people aren't retarded</code> | <code>0.7777777777777778</code> |
|
230 |
+
| <code>The more I read about dumb violent things do, like beating up two women bc they wouldn't kiss for them.. the gayer I become #Pride2019</code> | <code>Nuke them all</code> | <code>0.5555555555555556</code> |
|
231 |
+
| <code>Forget her cunt and ass and fuck her face till she pukes!</code> | <code>@QTAnon1 Hope she fucks her all the way back to Somalia..</code> | <code>1.0</code> |
|
232 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
233 |
+
```json
|
234 |
+
{
|
235 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
236 |
+
}
|
237 |
+
```
|
238 |
+
|
239 |
+
### Evaluation Dataset
|
240 |
+
|
241 |
+
#### Unnamed Dataset
|
242 |
+
|
243 |
+
|
244 |
+
* Size: 1,781 evaluation samples
|
245 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
246 |
+
* Approximate statistics based on the first 1000 samples:
|
247 |
+
| | sentence1 | sentence2 | score |
|
248 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
249 |
+
| type | string | string | float |
|
250 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 35.77 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 36.67 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.11</li><li>mean: 0.83</li><li>max: 1.0</li></ul> |
|
251 |
+
* Samples:
|
252 |
+
| sentence1 | sentence2 | score |
|
253 |
+
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
|
254 |
+
| <code>So for Trump and his inner circle to be crying over law and order, they sure know how to follow the system huh? Yet nothing about his ways of following the law were legal. So, how is his asylum rules were ever legal if children were sick and forced to live in unconditioned areas is American or right?</code> | <code>We need every illegal alien gang member in prison. Then deported.</code> | <code>1.0</code> |
|
255 |
+
| <code>hey girl are you my dick cause im about to beat the shit out of you</code> | <code>Reading all these hot takes from Americans, they all just seem like utter dogs. A human mind should not be this deranged, yet this is the norm in America</code> | <code>0.8888888888888888</code> |
|
256 |
+
| <code>Its amazing what a failure women are in politics. Its almost like its not in their nature to be powerful. No matter how much they try, poor dears....</code> | <code>Tbh that cut makes him look like neonazi. He looks like he's about to lecture me about how white people are the most discriminates against racially after he called me the n word with that hard r.</code> | <code>0.8888888888888888</code> |
|
257 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
258 |
+
```json
|
259 |
+
{
|
260 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
261 |
+
}
|
262 |
+
```
|
263 |
+
|
264 |
+
### Training Hyperparameters
|
265 |
+
#### Non-Default Hyperparameters
|
266 |
+
|
267 |
+
- `eval_strategy`: steps
|
268 |
+
- `per_device_train_batch_size`: 32
|
269 |
+
- `per_device_eval_batch_size`: 64
|
270 |
+
- `num_train_epochs`: 1
|
271 |
+
- `warmup_ratio`: 0.1
|
272 |
+
- `load_best_model_at_end`: True
|
273 |
+
|
274 |
+
#### All Hyperparameters
|
275 |
+
<details><summary>Click to expand</summary>
|
276 |
+
|
277 |
+
- `overwrite_output_dir`: False
|
278 |
+
- `do_predict`: False
|
279 |
+
- `eval_strategy`: steps
|
280 |
+
- `prediction_loss_only`: True
|
281 |
+
- `per_device_train_batch_size`: 32
|
282 |
+
- `per_device_eval_batch_size`: 64
|
283 |
+
- `per_gpu_train_batch_size`: None
|
284 |
+
- `per_gpu_eval_batch_size`: None
|
285 |
+
- `gradient_accumulation_steps`: 1
|
286 |
+
- `eval_accumulation_steps`: None
|
287 |
+
- `learning_rate`: 5e-05
|
288 |
+
- `weight_decay`: 0.0
|
289 |
+
- `adam_beta1`: 0.9
|
290 |
+
- `adam_beta2`: 0.999
|
291 |
+
- `adam_epsilon`: 1e-08
|
292 |
+
- `max_grad_norm`: 1.0
|
293 |
+
- `num_train_epochs`: 1
|
294 |
+
- `max_steps`: -1
|
295 |
+
- `lr_scheduler_type`: linear
|
296 |
+
- `lr_scheduler_kwargs`: {}
|
297 |
+
- `warmup_ratio`: 0.1
|
298 |
+
- `warmup_steps`: 0
|
299 |
+
- `log_level`: passive
|
300 |
+
- `log_level_replica`: warning
|
301 |
+
- `log_on_each_node`: True
|
302 |
+
- `logging_nan_inf_filter`: True
|
303 |
+
- `save_safetensors`: True
|
304 |
+
- `save_on_each_node`: False
|
305 |
+
- `save_only_model`: False
|
306 |
+
- `restore_callback_states_from_checkpoint`: False
|
307 |
+
- `no_cuda`: False
|
308 |
+
- `use_cpu`: False
|
309 |
+
- `use_mps_device`: False
|
310 |
+
- `seed`: 42
|
311 |
+
- `data_seed`: None
|
312 |
+
- `jit_mode_eval`: False
|
313 |
+
- `use_ipex`: False
|
314 |
+
- `bf16`: False
|
315 |
+
- `fp16`: False
|
316 |
+
- `fp16_opt_level`: O1
|
317 |
+
- `half_precision_backend`: auto
|
318 |
+
- `bf16_full_eval`: False
|
319 |
+
- `fp16_full_eval`: False
|
320 |
+
- `tf32`: None
|
321 |
+
- `local_rank`: 0
|
322 |
+
- `ddp_backend`: None
|
323 |
+
- `tpu_num_cores`: None
|
324 |
+
- `tpu_metrics_debug`: False
|
325 |
+
- `debug`: []
|
326 |
+
- `dataloader_drop_last`: False
|
327 |
+
- `dataloader_num_workers`: 0
|
328 |
+
- `dataloader_prefetch_factor`: None
|
329 |
+
- `past_index`: -1
|
330 |
+
- `disable_tqdm`: False
|
331 |
+
- `remove_unused_columns`: True
|
332 |
+
- `label_names`: None
|
333 |
+
- `load_best_model_at_end`: True
|
334 |
+
- `ignore_data_skip`: False
|
335 |
+
- `fsdp`: []
|
336 |
+
- `fsdp_min_num_params`: 0
|
337 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
338 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
339 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
340 |
+
- `deepspeed`: None
|
341 |
+
- `label_smoothing_factor`: 0.0
|
342 |
+
- `optim`: adamw_torch
|
343 |
+
- `optim_args`: None
|
344 |
+
- `adafactor`: False
|
345 |
+
- `group_by_length`: False
|
346 |
+
- `length_column_name`: length
|
347 |
+
- `ddp_find_unused_parameters`: None
|
348 |
+
- `ddp_bucket_cap_mb`: None
|
349 |
+
- `ddp_broadcast_buffers`: False
|
350 |
+
- `dataloader_pin_memory`: True
|
351 |
+
- `dataloader_persistent_workers`: False
|
352 |
+
- `skip_memory_metrics`: True
|
353 |
+
- `use_legacy_prediction_loop`: False
|
354 |
+
- `push_to_hub`: False
|
355 |
+
- `resume_from_checkpoint`: None
|
356 |
+
- `hub_model_id`: None
|
357 |
+
- `hub_strategy`: every_save
|
358 |
+
- `hub_private_repo`: False
|
359 |
+
- `hub_always_push`: False
|
360 |
+
- `gradient_checkpointing`: False
|
361 |
+
- `gradient_checkpointing_kwargs`: None
|
362 |
+
- `include_inputs_for_metrics`: False
|
363 |
+
- `eval_do_concat_batches`: True
|
364 |
+
- `fp16_backend`: auto
|
365 |
+
- `push_to_hub_model_id`: None
|
366 |
+
- `push_to_hub_organization`: None
|
367 |
+
- `mp_parameters`:
|
368 |
+
- `auto_find_batch_size`: False
|
369 |
+
- `full_determinism`: False
|
370 |
+
- `torchdynamo`: None
|
371 |
+
- `ray_scope`: last
|
372 |
+
- `ddp_timeout`: 1800
|
373 |
+
- `torch_compile`: False
|
374 |
+
- `torch_compile_backend`: None
|
375 |
+
- `torch_compile_mode`: None
|
376 |
+
- `dispatch_batches`: None
|
377 |
+
- `split_batches`: None
|
378 |
+
- `include_tokens_per_second`: False
|
379 |
+
- `include_num_input_tokens_seen`: False
|
380 |
+
- `neftune_noise_alpha`: None
|
381 |
+
- `optim_target_modules`: None
|
382 |
+
- `batch_eval_metrics`: False
|
383 |
+
- `batch_sampler`: batch_sampler
|
384 |
+
- `multi_dataset_batch_sampler`: proportional
|
385 |
+
|
386 |
+
</details>
|
387 |
+
|
388 |
+
### Training Logs
|
389 |
+
| Epoch | Step | Training Loss | loss | hatespeech-sampled-dev_spearman_cosine |
|
390 |
+
|:----------:|:-------:|:-------------:|:----------:|:--------------------------------------:|
|
391 |
+
| 0.2836 | 300 | 0.0503 | 0.0139 | 0.4258 |
|
392 |
+
| 0.5671 | 600 | 0.0143 | 0.0135 | 0.4418 |
|
393 |
+
| **0.8507** | **900** | **0.0134** | **0.0131** | **0.4527** |
|
394 |
+
|
395 |
+
* The bold row denotes the saved checkpoint.
|
396 |
+
|
397 |
+
### Framework Versions
|
398 |
+
- Python: 3.10.14
|
399 |
+
- Sentence Transformers: 3.0.0
|
400 |
+
- Transformers: 4.41.1
|
401 |
+
- PyTorch: 2.3.0
|
402 |
+
- Accelerate: 0.30.1
|
403 |
+
- Datasets: 2.19.1
|
404 |
+
- Tokenizers: 0.19.1
|
405 |
+
|
406 |
+
## Citation
|
407 |
+
|
408 |
+
### BibTeX
|
409 |
+
|
410 |
+
#### Sentence Transformers
|
411 |
+
```bibtex
|
412 |
+
@inproceedings{reimers-2019-sentence-bert,
|
413 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
414 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
415 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
416 |
+
month = "11",
|
417 |
+
year = "2019",
|
418 |
+
publisher = "Association for Computational Linguistics",
|
419 |
+
url = "https://arxiv.org/abs/1908.10084",
|
420 |
+
}
|
421 |
+
```
|
422 |
+
|
423 |
+
<!--
|
424 |
+
## Glossary
|
425 |
+
|
426 |
+
*Clearly define terms in order to be accessible across audiences.*
|
427 |
+
-->
|
428 |
+
|
429 |
+
<!--
|
430 |
+
## Model Card Authors
|
431 |
+
|
432 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
433 |
+
-->
|
434 |
+
|
435 |
+
<!--
|
436 |
+
## Model Card Contact
|
437 |
+
|
438 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
439 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "marrodion/minilm-l12-v2-simple",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.41.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.6.1",
|
5 |
+
"pytorch": "1.8.1"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db1815b9b7339f6e6861ba12e3c471e741aa1ce47e4b72578ab862f12f4ee83a
|
3 |
+
size 133462128
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 128,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|