markkhoffmann
commited on
Commit
•
8c9af13
1
Parent(s):
7d20617
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo_lunarLander-v2.zip +3 -0
- ppo_lunarLander-v2/_stable_baselines3_version +1 -0
- ppo_lunarLander-v2/data +94 -0
- ppo_lunarLander-v2/policy.optimizer.pth +3 -0
- ppo_lunarLander-v2/policy.pth +3 -0
- ppo_lunarLander-v2/pytorch_variables.pth +3 -0
- ppo_lunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 60.02 +/- 70.52
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f48257badd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f48257bae60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f48257baef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f48257baf80>", "_build": "<function ActorCriticPolicy._build at 0x7f48257c0050>", "forward": "<function ActorCriticPolicy.forward at 0x7f48257c00e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f48257c0170>", "_predict": "<function ActorCriticPolicy._predict at 0x7f48257c0200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f48257c0290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f48257c0320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f48257c03b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4825789a20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652068083.5618973, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOOHz3DoUu6jQ0HvIbkRTZGEoG6cKCztQAAgD8AAIA/nW6HPjMfuT7iPAm9LVr5vRcfBL2eZQE9AAAAAAAAAADNVP675A+wPjTeDTwOLd+9696zPIrsTr0AAAAAAAAAAAADlr0DEGY9nakmOxQeZ77C3SK+ORkJPQAAAAAAAAAAAKrOPg5zhD2a8Mc7MeMDOnJ5yT0xtAi7AACAPwAAgD+aavo89twCuqpkorznF6m8XTG2u/zJIbwAAAAAAAAAAM11uL0fhfa5N9AyOmExo7hKcqQ72ZBJuQAAAAAAAIA/TRyvPeH2irpRhaa95vx8togCDruDNt41AACAPwAAgD/GslG+rt+lPivUfj25hvy9Z+ByPOrGxj0AAAAAAAAAAAANPb7sLZ67GLZlu6uCqrhuhdM8mXajOQAAgD8AAIA/ABBHPdvIbj+ggzI+Ulhevm6LJr3ib189AAAAAAAAAADatba9PapwubY4kDpsrIy2czoYOwqHqbkAAIA/AACAP6YuPr4Tjno/vtsXPs4eBr7eNv69fLenPgAAAAAAAAAAZuHiPuVcCD9q6zi9dCDavaWr0TtbIfa9AAAAAAAAAAAAo0e+UVUyP35aXz0dSZu+p5rhu17cR70AAAAAAAAAAFOVX77xOUk8Xq04uskbQjgEYuG9WOleOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFF6CUx8ILECUhpRSlIwBbJRNVgGMAXSUR0CFUI2phnandX2UKGgGaAloD0MIrU7OUNwAUUCUhpRSlGgVTegDaBZHQIVWbOZ9d/t1fZQoaAZoCWgPQwhiTWVR2ClTwJSGlFKUaBVL+WgWR0CFXz+pfhMrdX2UKGgGaAloD0MIDjLJyFl4IMCUhpRSlGgVS/toFkdAhWni2+fyw3V9lChoBmgJaA9DCAgEOpM2ClRAlIaUUpRoFU3oA2gWR0CFoup6yB07dX2UKGgGaAloD0MIrMQ8K2mCW0CUhpRSlGgVTegDaBZHQIWk92ovSMN1fZQoaAZoCWgPQwjkhXR4iKZmQJSGlFKUaBVNeQJoFkdAha7dyksSTXV9lChoBmgJaA9DCMYUrHE2gTBAlIaUUpRoFU3oA2gWR0CFt847zTWodX2UKGgGaAloD0MI9Ik8SbqnUUCUhpRSlGgVTegDaBZHQIW/aK+BYmt1fZQoaAZoCWgPQwjvAbovZ49aQJSGlFKUaBVN6ANoFkdAhdKYku6ErXV9lChoBmgJaA9DCMU4fxMKMTnAlIaUUpRoFU0oAWgWR0CF1OzTF2mpdX2UKGgGaAloD0MIcGByo8gsWECUhpRSlGgVTegDaBZHQIXXUQRPGhp1fZQoaAZoCWgPQwiZhAt5BPRYQJSGlFKUaBVN6ANoFkdAhd0ArYoRZnV9lChoBmgJaA9DCNSdJ56zQFhAlIaUUpRoFU3oA2gWR0CF72MfA9FGdX2UKGgGaAloD0MIcOzZcxkXZkCUhpRSlGgVTZACaBZHQIXxHPkaMrF1fZQoaAZoCWgPQwhblxqhnzFcQJSGlFKUaBVN6ANoFkdAhfFGorFwUHV9lChoBmgJaA9DCMK+nUSEUzpAlIaUUpRoFU3oA2gWR0CF/5/GVAzIdX2UKGgGaAloD0MIOZ1kq8tRJkCUhpRSlGgVTSQBaBZHQIYCt8kUsWh1fZQoaAZoCWgPQwj4p1SJsjdGQJSGlFKUaBVN6ANoFkdAhiZMXBP9DXV9lChoBmgJaA9DCOqT3GETVFNAlIaUUpRoFU3oA2gWR0CGLjZSvTw2dX2UKGgGaAloD0MIBARz9PgIUkCUhpRSlGgVTegDaBZHQIY4M9+w1SB1fZQoaAZoCWgPQwg3bjE/N/ZQQJSGlFKUaBVN6ANoFkdAhkOVjI7vHHV9lChoBmgJaA9DCByxFp8ChFdAlIaUUpRoFU3oA2gWR0CGRhbzK9wndX2UKGgGaAloD0MIOzjYmxhCYkCUhpRSlGgVTegDaBZHQIaJauMdcSp1fZQoaAZoCWgPQwgC2IAIcfdYQJSGlFKUaBVN6ANoFkdAhpK+sYEW7HV9lChoBmgJaA9DCB4Zq83/pllAlIaUUpRoFU3oA2gWR0CGmioG6f8NdX2UKGgGaAloD0MI2nQEcLMTWkCUhpRSlGgVTegDaBZHQIarPied07t1fZQoaAZoCWgPQwj12mysxJ5ZQJSGlFKUaBVN6ANoFkdAhq/MVclgMXV9lChoBmgJaA9DCHIYzF8hzF1AlIaUUpRoFU3oA2gWR0CGtbacqe9SdX2UKGgGaAloD0MIsaVHUz31PECUhpRSlGgVTSEBaBZHQIbBRMrVe8h1fZQoaAZoCWgPQwiqKF5lbfVeQJSGlFKUaBVN6ANoFkdAhsheYMOPNnV9lChoBmgJaA9DCIwRiULLc1RAlIaUUpRoFU3oA2gWR0CGyg/h2nsLdX2UKGgGaAloD0MIJxO3CmK6WUCUhpRSlGgVTegDaBZHQIbKOEdvKlp1fZQoaAZoCWgPQwh1kUJZ+B5SwJSGlFKUaBVNdgFoFkdAhtYJuEVWS3V9lChoBmgJaA9DCIi4OZUMpF9AlIaUUpRoFU3oA2gWR0CG2N8fFJg9dX2UKGgGaAloD0MIJc0f09pMNECUhpRSlGgVTegDaBZHQIbb9pGnXNF1fZQoaAZoCWgPQwg6kPXU6rNKwJSGlFKUaBVL42gWR0CG6rXTVlPKdX2UKGgGaAloD0MIdZMYBFbSXUCUhpRSlGgVTegDaBZHQIb/kSoOx0N1fZQoaAZoCWgPQwiRQln4+uZXQJSGlFKUaBVN6ANoFkdAhwfnvlU6xXV9lChoBmgJaA9DCOVFJuDXLDfAlIaUUpRoFU0wAWgWR0CHCJM36yjYdX2UKGgGaAloD0MIfAxWnGodG8CUhpRSlGgVTRABaBZHQIcJwazeGfx1fZQoaAZoCWgPQwietkYEY0ZgQJSGlFKUaBVN6ANoFkdAhxGXBYV6/3V9lChoBmgJaA9DCIp0P6cg905AlIaUUpRoFU3oA2gWR0CHG7oFmnO0dX2UKGgGaAloD0MI2zF1V3bNTECUhpRSlGgVTegDaBZHQIcd8g0TDfp1fZQoaAZoCWgPQwiG6BA4EtNdQJSGlFKUaBVN6ANoFkdAh1+1k+X7cnV9lChoBmgJaA9DCDuJCP8iuD/AlIaUUpRoFU1aAWgWR0CHa2B19v0idX2UKGgGaAloD0MIJQhXQKFDWkCUhpRSlGgVTegDaBZHQIeAfk92X9l1fZQoaAZoCWgPQwgQCHQmbU1fQJSGlFKUaBVN6ANoFkdAh4UfU4JeFHV9lChoBmgJaA9DCHycacL2Y1pAlIaUUpRoFU3oA2gWR0CHirjNpudgdX2UKGgGaAloD0MIbOun/6zJM0CUhpRSlGgVTTwBaBZHQIeQOr6tT1l1fZQoaAZoCWgPQwh0eXO4Vu9fQJSGlFKUaBVN6ANoFkdAh5TcMNMGo3V9lChoBmgJaA9DCG40gLdAA1RAlIaUUpRoFU3oA2gWR0CHnKCyyD7JdX2UKGgGaAloD0MIHlGhurkIW0CUhpRSlGgVTegDaBZHQIecydrftQd1fZQoaAZoCWgPQwjhJw6gX7dhQJSGlFKUaBVN6ANoFkdAh6r+oLofS3V9lChoBmgJaA9DCOhrlsvGJGBAlIaUUpRoFU3oA2gWR0CHvU1TisGQdX2UKGgGaAloD0MI+OEgIcoXxj+UhpRSlGgVTWMBaBZHQIe/8WTHKfZ1fZQoaAZoCWgPQwiQMXctIR+8v5SGlFKUaBVNXQFoFkdAh9QFXzUZvXV9lChoBmgJaA9DCO2d0VYlEllAlIaUUpRoFU3oA2gWR0CH2anqFAVxdX2UKGgGaAloD0MIXwzlRLvOWUCUhpRSlGgVTegDaBZHQIfaRTn7pFF1fZQoaAZoCWgPQwigjPFh9k5eQJSGlFKUaBVN6ANoFkdAh9tbCaZx73V9lChoBmgJaA9DCH1aRX/otWNAlIaUUpRoFU3oA2gWR0CH4rLwnYxtdX2UKGgGaAloD0MIvQD76NRFQkCUhpRSlGgVS95oFkdAh+USXMQmNXV9lChoBmgJaA9DCHBdMSO8AFBAlIaUUpRoFU3oA2gWR0CH7DOHnEEUdX2UKGgGaAloD0MI2/l+arw9W0CUhpRSlGgVTegDaBZHQIfuVQO4G2V1fZQoaAZoCWgPQwiM17yqs35XQJSGlFKUaBVN6ANoFkdAiD1ebVjI73V9lChoBmgJaA9DCKmhDcAGMF9AlIaUUpRoFU3oA2gWR0CIVO/TspocdX2UKGgGaAloD0MITKWfcHZKUECUhpRSlGgVTegDaBZHQIhaAr1/UfB1fZQoaAZoCWgPQwiu82+X/ZFeQJSGlFKUaBVN6ANoFkdAiGdL876pHnV9lChoBmgJaA9DCB0gmKPHRlZAlIaUUpRoFU3oA2gWR0CIbPsfq5bydX2UKGgGaAloD0MIOGivPh6rV0CUhpRSlGgVTegDaBZHQIh1ofhddE91fZQoaAZoCWgPQwhWSWQfZDVMwJSGlFKUaBVNjQFoFkdAiIKodELH/HV9lChoBmgJaA9DCIld29st3VZAlIaUUpRoFU3oA2gWR0CIhgWD6FdtdX2UKGgGaAloD0MIy59vC5aSIsCUhpRSlGgVTXQBaBZHQIiT8/Y8Md91fZQoaAZoCWgPQwhJaTaPw4xaQJSGlFKUaBVN6ANoFkdAiJkJi7TUiXV9lChoBmgJaA9DCPcdw2M/i1xAlIaUUpRoFU3oA2gWR0CIr5sBQvYfdX2UKGgGaAloD0MIF4IclDCIW0CUhpRSlGgVTegDaBZHQIi1GTJQtSR1fZQoaAZoCWgPQwiKIM7DiUNgQJSGlFKUaBVN6ANoFkdAiLXBeokzGnV9lChoBmgJaA9DCM4Y5gRt22BAlIaUUpRoFU3oA2gWR0CIttEofCAMdX2UKGgGaAloD0MIArnEkQcRWkCUhpRSlGgVTegDaBZHQIi98BKcurZ1fZQoaAZoCWgPQwi0lCwnIXFgQJSGlFKUaBVN6ANoFkdAiMBs/6frbHV9lChoBmgJaA9DCE+TGW8rNVdAlIaUUpRoFU3oA2gWR0CIx0S7GvOhdX2UKGgGaAloD0MIMjogCfukU0CUhpRSlGgVTegDaBZHQIjJXZ00WM11fZQoaAZoCWgPQwh1HhX/d5w+QJSGlFKUaBVNNQFoFkdAiRtzLfUF0XV9lChoBmgJaA9DCMr5Yu/FFldAlIaUUpRoFU3oA2gWR0CJN4teUpuudX2UKGgGaAloD0MI9aEL6lvMVUCUhpRSlGgVTegDaBZHQIlHd9lVcUx1fZQoaAZoCWgPQwisxacAGIVZQJSGlFKUaBVN6ANoFkdAiU3a/RE4N3V9lChoBmgJaA9DCOMcdXRcL19AlIaUUpRoFU3oA2gWR0CJV8eYD1XedX2UKGgGaAloD0MIofgx5q4dWECUhpRSlGgVTegDaBZHQIlmXI8yN4t1fZQoaAZoCWgPQwifsMQDytZiQJSGlFKUaBVN6ANoFkdAiWoOQhfShXV9lChoBmgJaA9DCMwnK4arA1dAlIaUUpRoFU3oA2gWR0CJeZGyX2M9dX2UKGgGaAloD0MITkNU4c/qU0CUhpRSlGgVTegDaBZHQIl/Bx95Qgt1fZQoaAZoCWgPQwhFhH8RNB48wJSGlFKUaBVNiAFoFkdAiY5b1qWTo3V9lChoBmgJaA9DCLK9FvRe1WJAlIaUUpRoFU3oA2gWR0CJlagf2bobdX2UKGgGaAloD0MIQ8pPqn2hV0CUhpRSlGgVTegDaBZHQIma6nBLwnZ1fZQoaAZoCWgPQwiM9nghHTlSQJSGlFKUaBVN6ANoFkdAiZt23azu4XV9lChoBmgJaA9DCNibGJKTRllAlIaUUpRoFU3oA2gWR0CJo4uXeFcqdX2UKGgGaAloD0MIDAQBMnR6X0CUhpRSlGgVTegDaBZHQIml90cOskp1fZQoaAZoCWgPQwilaVA0D8NiQJSGlFKUaBVN6ANoFkdAiaybrs0HhXV9lChoBmgJaA9DCJimCHB6G15AlIaUUpRoFU3oA2gWR0CJrpxR2r4ndX2UKGgGaAloD0MIFasGYW7bRECUhpRSlGgVTQQBaBZHQIm1JntfG+91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.17.3"}}
|
ppo_lunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:749b75404b9f26cd37d63c97111f7b6b0050837bca0038fcad620d3433355be0
|
3 |
+
size 144042
|
ppo_lunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo_lunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f48257badd0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f48257bae60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f48257baef0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f48257baf80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f48257c0050>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f48257c00e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f48257c0170>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f48257c0200>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f48257c0290>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f48257c0320>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f48257c03b0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f4825789a20>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
26 |
+
"dtype": "float32",
|
27 |
+
"shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
39 |
+
"n": 4,
|
40 |
+
"shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652068083.5618973,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOOHz3DoUu6jQ0HvIbkRTZGEoG6cKCztQAAgD8AAIA/nW6HPjMfuT7iPAm9LVr5vRcfBL2eZQE9AAAAAAAAAADNVP675A+wPjTeDTwOLd+9696zPIrsTr0AAAAAAAAAAAADlr0DEGY9nakmOxQeZ77C3SK+ORkJPQAAAAAAAAAAAKrOPg5zhD2a8Mc7MeMDOnJ5yT0xtAi7AACAPwAAgD+aavo89twCuqpkorznF6m8XTG2u/zJIbwAAAAAAAAAAM11uL0fhfa5N9AyOmExo7hKcqQ72ZBJuQAAAAAAAIA/TRyvPeH2irpRhaa95vx8togCDruDNt41AACAPwAAgD/GslG+rt+lPivUfj25hvy9Z+ByPOrGxj0AAAAAAAAAAAANPb7sLZ67GLZlu6uCqrhuhdM8mXajOQAAgD8AAIA/ABBHPdvIbj+ggzI+Ulhevm6LJr3ib189AAAAAAAAAADatba9PapwubY4kDpsrIy2czoYOwqHqbkAAIA/AACAP6YuPr4Tjno/vtsXPs4eBr7eNv69fLenPgAAAAAAAAAAZuHiPuVcCD9q6zi9dCDavaWr0TtbIfa9AAAAAAAAAAAAo0e+UVUyP35aXz0dSZu+p5rhu17cR70AAAAAAAAAAFOVX77xOUk8Xq04uskbQjgEYuG9WOleOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFF6CUx8ILECUhpRSlIwBbJRNVgGMAXSUR0CFUI2phnandX2UKGgGaAloD0MIrU7OUNwAUUCUhpRSlGgVTegDaBZHQIVWbOZ9d/t1fZQoaAZoCWgPQwhiTWVR2ClTwJSGlFKUaBVL+WgWR0CFXz+pfhMrdX2UKGgGaAloD0MIDjLJyFl4IMCUhpRSlGgVS/toFkdAhWni2+fyw3V9lChoBmgJaA9DCAgEOpM2ClRAlIaUUpRoFU3oA2gWR0CFoup6yB07dX2UKGgGaAloD0MIrMQ8K2mCW0CUhpRSlGgVTegDaBZHQIWk92ovSMN1fZQoaAZoCWgPQwjkhXR4iKZmQJSGlFKUaBVNeQJoFkdAha7dyksSTXV9lChoBmgJaA9DCMYUrHE2gTBAlIaUUpRoFU3oA2gWR0CFt847zTWodX2UKGgGaAloD0MI9Ik8SbqnUUCUhpRSlGgVTegDaBZHQIW/aK+BYmt1fZQoaAZoCWgPQwjvAbovZ49aQJSGlFKUaBVN6ANoFkdAhdKYku6ErXV9lChoBmgJaA9DCMU4fxMKMTnAlIaUUpRoFU0oAWgWR0CF1OzTF2mpdX2UKGgGaAloD0MIcGByo8gsWECUhpRSlGgVTegDaBZHQIXXUQRPGhp1fZQoaAZoCWgPQwiZhAt5BPRYQJSGlFKUaBVN6ANoFkdAhd0ArYoRZnV9lChoBmgJaA9DCNSdJ56zQFhAlIaUUpRoFU3oA2gWR0CF72MfA9FGdX2UKGgGaAloD0MIcOzZcxkXZkCUhpRSlGgVTZACaBZHQIXxHPkaMrF1fZQoaAZoCWgPQwhblxqhnzFcQJSGlFKUaBVN6ANoFkdAhfFGorFwUHV9lChoBmgJaA9DCMK+nUSEUzpAlIaUUpRoFU3oA2gWR0CF/5/GVAzIdX2UKGgGaAloD0MIOZ1kq8tRJkCUhpRSlGgVTSQBaBZHQIYCt8kUsWh1fZQoaAZoCWgPQwj4p1SJsjdGQJSGlFKUaBVN6ANoFkdAhiZMXBP9DXV9lChoBmgJaA9DCOqT3GETVFNAlIaUUpRoFU3oA2gWR0CGLjZSvTw2dX2UKGgGaAloD0MIBARz9PgIUkCUhpRSlGgVTegDaBZHQIY4M9+w1SB1fZQoaAZoCWgPQwg3bjE/N/ZQQJSGlFKUaBVN6ANoFkdAhkOVjI7vHHV9lChoBmgJaA9DCByxFp8ChFdAlIaUUpRoFU3oA2gWR0CGRhbzK9wndX2UKGgGaAloD0MIOzjYmxhCYkCUhpRSlGgVTegDaBZHQIaJauMdcSp1fZQoaAZoCWgPQwgC2IAIcfdYQJSGlFKUaBVN6ANoFkdAhpK+sYEW7HV9lChoBmgJaA9DCB4Zq83/pllAlIaUUpRoFU3oA2gWR0CGmioG6f8NdX2UKGgGaAloD0MI2nQEcLMTWkCUhpRSlGgVTegDaBZHQIarPied07t1fZQoaAZoCWgPQwj12mysxJ5ZQJSGlFKUaBVN6ANoFkdAhq/MVclgMXV9lChoBmgJaA9DCHIYzF8hzF1AlIaUUpRoFU3oA2gWR0CGtbacqe9SdX2UKGgGaAloD0MIsaVHUz31PECUhpRSlGgVTSEBaBZHQIbBRMrVe8h1fZQoaAZoCWgPQwiqKF5lbfVeQJSGlFKUaBVN6ANoFkdAhsheYMOPNnV9lChoBmgJaA9DCIwRiULLc1RAlIaUUpRoFU3oA2gWR0CGyg/h2nsLdX2UKGgGaAloD0MIJxO3CmK6WUCUhpRSlGgVTegDaBZHQIbKOEdvKlp1fZQoaAZoCWgPQwh1kUJZ+B5SwJSGlFKUaBVNdgFoFkdAhtYJuEVWS3V9lChoBmgJaA9DCIi4OZUMpF9AlIaUUpRoFU3oA2gWR0CG2N8fFJg9dX2UKGgGaAloD0MIJc0f09pMNECUhpRSlGgVTegDaBZHQIbb9pGnXNF1fZQoaAZoCWgPQwg6kPXU6rNKwJSGlFKUaBVL42gWR0CG6rXTVlPKdX2UKGgGaAloD0MIdZMYBFbSXUCUhpRSlGgVTegDaBZHQIb/kSoOx0N1fZQoaAZoCWgPQwiRQln4+uZXQJSGlFKUaBVN6ANoFkdAhwfnvlU6xXV9lChoBmgJaA9DCOVFJuDXLDfAlIaUUpRoFU0wAWgWR0CHCJM36yjYdX2UKGgGaAloD0MIfAxWnGodG8CUhpRSlGgVTRABaBZHQIcJwazeGfx1fZQoaAZoCWgPQwietkYEY0ZgQJSGlFKUaBVN6ANoFkdAhxGXBYV6/3V9lChoBmgJaA9DCIp0P6cg905AlIaUUpRoFU3oA2gWR0CHG7oFmnO0dX2UKGgGaAloD0MI2zF1V3bNTECUhpRSlGgVTegDaBZHQIcd8g0TDfp1fZQoaAZoCWgPQwiG6BA4EtNdQJSGlFKUaBVN6ANoFkdAh1+1k+X7cnV9lChoBmgJaA9DCDuJCP8iuD/AlIaUUpRoFU1aAWgWR0CHa2B19v0idX2UKGgGaAloD0MIJQhXQKFDWkCUhpRSlGgVTegDaBZHQIeAfk92X9l1fZQoaAZoCWgPQwgQCHQmbU1fQJSGlFKUaBVN6ANoFkdAh4UfU4JeFHV9lChoBmgJaA9DCHycacL2Y1pAlIaUUpRoFU3oA2gWR0CHirjNpudgdX2UKGgGaAloD0MIbOun/6zJM0CUhpRSlGgVTTwBaBZHQIeQOr6tT1l1fZQoaAZoCWgPQwh0eXO4Vu9fQJSGlFKUaBVN6ANoFkdAh5TcMNMGo3V9lChoBmgJaA9DCG40gLdAA1RAlIaUUpRoFU3oA2gWR0CHnKCyyD7JdX2UKGgGaAloD0MIHlGhurkIW0CUhpRSlGgVTegDaBZHQIecydrftQd1fZQoaAZoCWgPQwjhJw6gX7dhQJSGlFKUaBVN6ANoFkdAh6r+oLofS3V9lChoBmgJaA9DCOhrlsvGJGBAlIaUUpRoFU3oA2gWR0CHvU1TisGQdX2UKGgGaAloD0MI+OEgIcoXxj+UhpRSlGgVTWMBaBZHQIe/8WTHKfZ1fZQoaAZoCWgPQwiQMXctIR+8v5SGlFKUaBVNXQFoFkdAh9QFXzUZvXV9lChoBmgJaA9DCO2d0VYlEllAlIaUUpRoFU3oA2gWR0CH2anqFAVxdX2UKGgGaAloD0MIXwzlRLvOWUCUhpRSlGgVTegDaBZHQIfaRTn7pFF1fZQoaAZoCWgPQwigjPFh9k5eQJSGlFKUaBVN6ANoFkdAh9tbCaZx73V9lChoBmgJaA9DCH1aRX/otWNAlIaUUpRoFU3oA2gWR0CH4rLwnYxtdX2UKGgGaAloD0MIvQD76NRFQkCUhpRSlGgVS95oFkdAh+USXMQmNXV9lChoBmgJaA9DCHBdMSO8AFBAlIaUUpRoFU3oA2gWR0CH7DOHnEEUdX2UKGgGaAloD0MI2/l+arw9W0CUhpRSlGgVTegDaBZHQIfuVQO4G2V1fZQoaAZoCWgPQwiM17yqs35XQJSGlFKUaBVN6ANoFkdAiD1ebVjI73V9lChoBmgJaA9DCKmhDcAGMF9AlIaUUpRoFU3oA2gWR0CIVO/TspocdX2UKGgGaAloD0MITKWfcHZKUECUhpRSlGgVTegDaBZHQIhaAr1/UfB1fZQoaAZoCWgPQwiu82+X/ZFeQJSGlFKUaBVN6ANoFkdAiGdL876pHnV9lChoBmgJaA9DCB0gmKPHRlZAlIaUUpRoFU3oA2gWR0CIbPsfq5bydX2UKGgGaAloD0MIOGivPh6rV0CUhpRSlGgVTegDaBZHQIh1ofhddE91fZQoaAZoCWgPQwhWSWQfZDVMwJSGlFKUaBVNjQFoFkdAiIKodELH/HV9lChoBmgJaA9DCIld29st3VZAlIaUUpRoFU3oA2gWR0CIhgWD6FdtdX2UKGgGaAloD0MIy59vC5aSIsCUhpRSlGgVTXQBaBZHQIiT8/Y8Md91fZQoaAZoCWgPQwhJaTaPw4xaQJSGlFKUaBVN6ANoFkdAiJkJi7TUiXV9lChoBmgJaA9DCPcdw2M/i1xAlIaUUpRoFU3oA2gWR0CIr5sBQvYfdX2UKGgGaAloD0MIF4IclDCIW0CUhpRSlGgVTegDaBZHQIi1GTJQtSR1fZQoaAZoCWgPQwiKIM7DiUNgQJSGlFKUaBVN6ANoFkdAiLXBeokzGnV9lChoBmgJaA9DCM4Y5gRt22BAlIaUUpRoFU3oA2gWR0CIttEofCAMdX2UKGgGaAloD0MIArnEkQcRWkCUhpRSlGgVTegDaBZHQIi98BKcurZ1fZQoaAZoCWgPQwi0lCwnIXFgQJSGlFKUaBVN6ANoFkdAiMBs/6frbHV9lChoBmgJaA9DCE+TGW8rNVdAlIaUUpRoFU3oA2gWR0CIx0S7GvOhdX2UKGgGaAloD0MIMjogCfukU0CUhpRSlGgVTegDaBZHQIjJXZ00WM11fZQoaAZoCWgPQwh1HhX/d5w+QJSGlFKUaBVNNQFoFkdAiRtzLfUF0XV9lChoBmgJaA9DCMr5Yu/FFldAlIaUUpRoFU3oA2gWR0CJN4teUpuudX2UKGgGaAloD0MI9aEL6lvMVUCUhpRSlGgVTegDaBZHQIlHd9lVcUx1fZQoaAZoCWgPQwisxacAGIVZQJSGlFKUaBVN6ANoFkdAiU3a/RE4N3V9lChoBmgJaA9DCOMcdXRcL19AlIaUUpRoFU3oA2gWR0CJV8eYD1XedX2UKGgGaAloD0MIofgx5q4dWECUhpRSlGgVTegDaBZHQIlmXI8yN4t1fZQoaAZoCWgPQwifsMQDytZiQJSGlFKUaBVN6ANoFkdAiWoOQhfShXV9lChoBmgJaA9DCMwnK4arA1dAlIaUUpRoFU3oA2gWR0CJeZGyX2M9dX2UKGgGaAloD0MITkNU4c/qU0CUhpRSlGgVTegDaBZHQIl/Bx95Qgt1fZQoaAZoCWgPQwhFhH8RNB48wJSGlFKUaBVNiAFoFkdAiY5b1qWTo3V9lChoBmgJaA9DCLK9FvRe1WJAlIaUUpRoFU3oA2gWR0CJlagf2bobdX2UKGgGaAloD0MIQ8pPqn2hV0CUhpRSlGgVTegDaBZHQIma6nBLwnZ1fZQoaAZoCWgPQwiM9nghHTlSQJSGlFKUaBVN6ANoFkdAiZt23azu4XV9lChoBmgJaA9DCNibGJKTRllAlIaUUpRoFU3oA2gWR0CJo4uXeFcqdX2UKGgGaAloD0MIDAQBMnR6X0CUhpRSlGgVTegDaBZHQIml90cOskp1fZQoaAZoCWgPQwilaVA0D8NiQJSGlFKUaBVN6ANoFkdAiaybrs0HhXV9lChoBmgJaA9DCJimCHB6G15AlIaUUpRoFU3oA2gWR0CJrpxR2r4ndX2UKGgGaAloD0MIFasGYW7bRECUhpRSlGgVTQQBaBZHQIm1JntfG+91ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo_lunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9afbec6757ad11950c8a215d3fade5d8fac5be966014165653b109fbfa11cf11
|
3 |
+
size 84829
|
ppo_lunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:272cfb47a762cf1e414817ac3dd923e13f358b3fa6d2105230baa08c15f1066a
|
3 |
+
size 43201
|
ppo_lunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_lunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.17.3
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bae63529e5317281d4baf0fdf5b973d62a50936cde7595193f88e394fe9394e1
|
3 |
+
size 254429
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 60.024219128868594, "std_reward": 70.518927661742, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T04:02:03.688351"}
|