markeidsaune commited on
Commit
b3b8498
1 Parent(s): a0f5e68

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 269.05 +/- 15.71
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 267.15 +/- 24.01
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7bbb4899d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7bbb489a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7bbb489af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7bbb489b80>", "_build": "<function ActorCriticPolicy._build at 0x7f7bbb489c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f7bbb489ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7bbb489d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7bbb489dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7bbb489e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7bbb489ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7bbb489f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7bbb48e040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7bbb47ab70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679949643873217265, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWViQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL21hcmsvcmxfY291cnNlL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAD3/hj7niS8/PzeAu7rloL6z51s+DnIbvgAAAAAAAAAATTMyPVzrI7q6MZe28TfgsYbQjrrrlbU1AACAPwAAgD8TZDe+4fQmP2MLGT1AruO+876AvZVVhD0AAAAAAAAAAOCReb6hPug+IrapPdVnk75K2AC+cAsMPgAAAAAAAAAA5g0bvunPDrztt9a7nN8zurvLeD0fpRU7AACAPwAAgD9AeRw+0NeVPiif971yZYy+slMuvYh79LwAAAAAAAAAAM1C6bwxzW8+mTCVve5Orr7BGKq9Dko0PQAAAAAAAAAAzWBQvYVj27uRgJo8HjqPPLztKr3GcXE9AACAPwAAgD/GFxu+7FPHOgEFHbdKEAg0D/+gvFevODYAAIA/AACAP6YBjL2UrVc+v88xPqHLlb4PGcC8VvsSPgAAAAAAAAAAZrEnPeG0qLqnykgze+EiL6YviDn9atCzAACAPwAAgD+acwM9rpmPuiJ9obVN87OwqvCVuANUrzQAAIA/AACAP41ZAT5cKzW6yKcFvW9Yibk9nKa60DVwugAAgD8AAIA/Zh3rvJ+T+Luo2Ac+RVZnvvwnGDyD9SG/AACAPwAAgD/zB7E9VXWpPizdnzwDFo2+L7g3PO4WP7wAAAAAAAAAAMBj5L3ngFQ/yAo7vcvl4b53tpS9EFV3PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfH+D9qpscUCUhpRSlIwBbJRNRgGMAXSUR0CVn5W3Sa3JdX2UKGgGaAloD0MIE36pnzfhckCUhpRSlGgVTTkBaBZHQJWgRtUGVzJ1fZQoaAZoCWgPQwjj/E0ohExwQJSGlFKUaBVNZAFoFkdAlaCoNZvDQHV9lChoBmgJaA9DCO5dg750L29AlIaUUpRoFU0ZAWgWR0CVoWLn9vS/dX2UKGgGaAloD0MIeVvptRkMckCUhpRSlGgVTRQBaBZHQJWhfCfpUxV1fZQoaAZoCWgPQwgJpppZS5dyQJSGlFKUaBVNJQFoFkdAlaIzuBtk4HV9lChoBmgJaA9DCNQrZRkiVHNAlIaUUpRoFUvoaBZHQJWiWLFXJYF1fZQoaAZoCWgPQwhd4PJYM89wQJSGlFKUaBVNFAFoFkdAlaJ4rjHXE3V9lChoBmgJaA9DCNz0Zz/SQHJAlIaUUpRoFU17AWgWR0CVovw2ETQFdX2UKGgGaAloD0MI2uOFdHg8cUCUhpRSlGgVTQIBaBZHQJWjD82rGR51fZQoaAZoCWgPQwjWGd8XF5dyQJSGlFKUaBVNLgFoFkdAlaTh7qptJnV9lChoBmgJaA9DCMri/iOTw3FAlIaUUpRoFU0EAWgWR0CVpVKhtcfOdX2UKGgGaAloD0MI0qkrn6UkcECUhpRSlGgVTRcBaBZHQJWmW0G/vfF1fZQoaAZoCWgPQwhkP4ulyP1vQJSGlFKUaBVNHwFoFkdAlaa8BU70WnV9lChoBmgJaA9DCE1lUdhFLW1AlIaUUpRoFU1DAWgWR0CVp2kGzKLbdX2UKGgGaAloD0MIzo5U33kickCUhpRSlGgVTREBaBZHQJWn/e+Eh7p1fZQoaAZoCWgPQwjoS29/LvBtQJSGlFKUaBVNBgFoFkdAlagJDeCTU3V9lChoBmgJaA9DCOy/zk3bK3JAlIaUUpRoFU0rAWgWR0CVqBNZeRgadX2UKGgGaAloD0MIKJtyhbd3cUCUhpRSlGgVTQIBaBZHQJWojdrO7g91fZQoaAZoCWgPQwhsk4rGWr9xQJSGlFKUaBVNAQFoFkdAlaieRgZ0jnV9lChoBmgJaA9DCNI0KJoHU3NAlIaUUpRoFUv2aBZHQJWpPKp1ifB1fZQoaAZoCWgPQwh8Zd6qq4ZwQJSGlFKUaBVNBwFoFkdAlalprpJPInV9lChoBmgJaA9DCJoK8Uh883JAlIaUUpRoFU2BAWgWR0CVqjnpjc2zdX2UKGgGaAloD0MIajF4mHb2cUCUhpRSlGgVTQ0BaBZHQJWqVkGzKLd1fZQoaAZoCWgPQwgl7NtJxA9xQJSGlFKUaBVNLAFoFkdAlap/lZHNHHV9lChoBmgJaA9DCHWTGASWv3JAlIaUUpRoFU1CAWgWR0CVq7PqLS/kdX2UKGgGaAloD0MIyVpDqf3gcUCUhpRSlGgVTSgBaBZHQJWtB+TeO4p1fZQoaAZoCWgPQwjWcmcmmNJxQJSGlFKUaBVNJAFoFkdAla1egxrSE3V9lChoBmgJaA9DCAkWhzM/6W9AlIaUUpRoFU0DAWgWR0CVrcEaVD8cdX2UKGgGaAloD0MImDJwQMstb0CUhpRSlGgVTSABaBZHQJWuRShrWRR1fZQoaAZoCWgPQwgJwap6+VBwQJSGlFKUaBVNIgFoFkdAla9ryMDOknV9lChoBmgJaA9DCMDPuHDgM3BAlIaUUpRoFU0JAWgWR0CVsB+5e7cxdX2UKGgGaAloD0MI8PlhhDDicECUhpRSlGgVTSEBaBZHQJWwKDkELYx1fZQoaAZoCWgPQwhaZ3xfHNxwQJSGlFKUaBVNJwFoFkdAlbBLxmTTv3V9lChoBmgJaA9DCORmuAEf/XBAlIaUUpRoFU0lAWgWR0CVsOVQQ+UydX2UKGgGaAloD0MIjh8qjViCcECUhpRSlGgVTQ0BaBZHQJWw/wCr92p1fZQoaAZoCWgPQwi+MJkqmMtyQJSGlFKUaBVL/WgWR0CVscWRigCfdX2UKGgGaAloD0MIMIDwoQSrcECUhpRSlGgVTX0BaBZHQJWy7hP0qYt1fZQoaAZoCWgPQwhIUWfu4ShxQJSGlFKUaBVNMAFoFkdAlbMueBg/knV9lChoBmgJaA9DCDHuBtEa6nBAlIaUUpRoFU1TAWgWR0CVs0btZ3cIdX2UKGgGaAloD0MImgmGc82BcUCUhpRSlGgVTQ4BaBZHQJWz3Vsk6cR1fZQoaAZoCWgPQwhOCYhJuLZvQJSGlFKUaBVNTQFoFkdAlbQ3NTtLMHV9lChoBmgJaA9DCCRFZFgFgXFAlIaUUpRoFUv6aBZHQJW0xh8Yyft1fZQoaAZoCWgPQwhaoUj3s41yQJSGlFKUaBVNFgFoFkdAlbU2/SH/LnV9lChoBmgJaA9DCBCxwcKJ4nBAlIaUUpRoFU1EAWgWR0CVt+0l7dBTdX2UKGgGaAloD0MIeo1donoWcUCUhpRSlGgVTS4BaBZHQJW4colUp/h1fZQoaAZoCWgPQwj4wfnUMfhxQJSGlFKUaBVNAwFoFkdAlbiNjCpFTnV9lChoBmgJaA9DCP2iBP3F7nBAlIaUUpRoFU1oAWgWR0CVuKCBPKuCdX2UKGgGaAloD0MI95Dwvf/qcECUhpRSlGgVTTEBaBZHQJW5Nn27FsJ1fZQoaAZoCWgPQwibVZ+rLQVvQJSGlFKUaBVNGgFoFkdAldASn+AEuHV9lChoBmgJaA9DCLHh6ZUy9m1AlIaUUpRoFU0EAWgWR0CV0DTh5xBFdX2UKGgGaAloD0MIjbgANIpScECUhpRSlGgVS+loFkdAldGLMPjGUHV9lChoBmgJaA9DCBUA4xk0qm9AlIaUUpRoFU1mAWgWR0CV0Zg/TspodX2UKGgGaAloD0MIDmYTYNjMcUCUhpRSlGgVTR8BaBZHQJXSdMTN+sp1fZQoaAZoCWgPQwjm6PF72w9xQJSGlFKUaBVNEwFoFkdAldMsSbpeNXV9lChoBmgJaA9DCPlnBvHBEXBAlIaUUpRoFU1VAWgWR0CV07nBciW3dX2UKGgGaAloD0MIe4LEdvcIcECUhpRSlGgVTRgBaBZHQJXUgHE/B311fZQoaAZoCWgPQwjkLOxpx15xQJSGlFKUaBVNBgFoFkdAldfNfw7T2HV9lChoBmgJaA9DCCbirfPvJ3BAlIaUUpRoFU2CAWgWR0CV1+vEjxCqdX2UKGgGaAloD0MI/KiG/Z4/cUCUhpRSlGgVTQgBaBZHQJXX9fE4vOB1fZQoaAZoCWgPQwghyaze4SFyQJSGlFKUaBVNHAFoFkdAldh5prULD3V9lChoBmgJaA9DCC43GOqwJ25AlIaUUpRoFU0PAWgWR0CV2NjX4CZGdX2UKGgGaAloD0MI1O5XAX7ZcUCUhpRSlGgVTUwBaBZHQJXZoVEd/8V1fZQoaAZoCWgPQwiAZaVJKaZtQJSGlFKUaBVNCwFoFkdAldqe5nUUf3V9lChoBmgJaA9DCPNy2H1HEm9AlIaUUpRoFU1NAWgWR0CV2yRw6ySndX2UKGgGaAloD0MIv7fpz77IckCUhpRSlGgVS/5oFkdAldwQX2ugYnV9lChoBmgJaA9DCNWUZB2OYG9AlIaUUpRoFU1UAmgWR0CV3PmjCYTkdX2UKGgGaAloD0MIqOUHrjKDckCUhpRSlGgVTX4BaBZHQJXc9p/PPcB1fZQoaAZoCWgPQwiWr8vwn4dxQJSGlFKUaBVNGwFoFkdAld2hwuM+/3V9lChoBmgJaA9DCIhH4uXpwGxAlIaUUpRoFU0MAWgWR0CV3fcmShaldX2UKGgGaAloD0MICtgORqy4cECUhpRSlGgVTdMBaBZHQJXhRcSoOx11fZQoaAZoCWgPQwgKE0azcktxQJSGlFKUaBVNJAFoFkdAleG0KJEYwnV9lChoBmgJaA9DCNEjRs/tsXFAlIaUUpRoFU0MAWgWR0CV4dB68g6mdX2UKGgGaAloD0MI4SnkSn1QckCUhpRSlGgVTScBaBZHQJXiXVlPJq91fZQoaAZoCWgPQwjzzMthdytwQJSGlFKUaBVNFAFoFkdAleLl3yI553V9lChoBmgJaA9DCMNGWb/ZUnJAlIaUUpRoFU1PAWgWR0CV4xfbKzRhdX2UKGgGaAloD0MIlpNQ+sJGckCUhpRSlGgVS/toFkdAleOBAOavzXV9lChoBmgJaA9DCF+YTBWM8m9AlIaUUpRoFU0jAWgWR0CV5EQFcIJJdX2UKGgGaAloD0MIlDMUd7zkckCUhpRSlGgVS+RoFkdAleR56QeV9nV9lChoBmgJaA9DCIrpQqy+2HFAlIaUUpRoFU0HAWgWR0CV5LOjqOcUdX2UKGgGaAloD0MIrVCk+7kgbkCUhpRSlGgVTYEBaBZHQJXkwlpoK2N1fZQoaAZoCWgPQwgviEhNO1dxQJSGlFKUaBVL8WgWR0CV5NR2r4nGdX2UKGgGaAloD0MIxyk6kkuWcUCUhpRSlGgVS+1oFkdAleU5E+gUUXV9lChoBmgJaA9DCG+6ZYf4QWBAlIaUUpRoFU3oA2gWR0CV5liAlOXWdX2UKGgGaAloD0MIJ02DorlgcECUhpRSlGgVTR4BaBZHQJXmuTjebd91fZQoaAZoCWgPQwgbLnJPV89RQJSGlFKUaBVLtWgWR0CV5uULDye7dX2UKGgGaAloD0MIgVoMHuaFckCUhpRSlGgVTagCaBZHQJXoKqm0mdB1fZQoaAZoCWgPQwiV056Ss51wQJSGlFKUaBVNAAFoFkdAleiK3NLUTnV9lChoBmgJaA9DCC+JsyJqTk9AlIaUUpRoFUvWaBZHQJXootf5ULl1fZQoaAZoCWgPQwgOL4hIDVZyQJSGlFKUaBVL92gWR0CV6Rlsxfv4dX2UKGgGaAloD0MIu7iNBvAhcUCUhpRSlGgVS+5oFkdAlenJVGTcI3V9lChoBmgJaA9DCACuZMdGn29AlIaUUpRoFU0DAWgWR0CV6gLaEi+tdX2UKGgGaAloD0MI5ZttbkzqcECUhpRSlGgVTT0BaBZHQJXqlxDLKV91fZQoaAZoCWgPQwizsn3IG2FwQJSGlFKUaBVNAAFoFkdAler4ZdfLLnV9lChoBmgJaA9DCB+GVifnKHBAlIaUUpRoFU0FAWgWR0CV64v0AcT8dX2UKGgGaAloD0MIrKqX32l6cECUhpRSlGgVTQgBaBZHQJXrlFgDzRR1fZQoaAZoCWgPQwhZpfRMr3lsQJSGlFKUaBVNIAFoFkdAlezMvEjxC3V9lChoBmgJaA9DCLGjcagfBHFAlIaUUpRoFUvnaBZHQJXs4vHtF8Z1fZQoaAZoCWgPQwgBUMWN29pvQJSGlFKUaBVNTAFoFkdAle02QwK0D3V9lChoBmgJaA9DCEInhA66VG5AlIaUUpRoFU1DAWgWR0CV7UnE2pAEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWViQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL21hcmsvcmxfY291cnNlL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-56-generic-x86_64-with-glibc2.29 # 62~20.04.1-Ubuntu SMP Tue Nov 22 21:24:20 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f82c65d2790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f82c65d2820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f82c65d28b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f82c65d2940>", "_build": "<function ActorCriticPolicy._build at 0x7f82c65d29d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f82c65d2a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f82c65d2af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f82c65d2b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f82c65d2c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f82c65d2ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f82c65d2d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f82c65d2dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f82c65caa20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680800758668207288, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL21hcmsvcmxfY291cnNlLy51bml0MV92ZW52L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9tYXJrL3JsX2NvdXJzZS8udW5pdDFfdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANr7o72PSn26BZQUtdGw2q+9tze7mltvNAAAgD8AAIA/AOjYO0i5njkO3vg8viGhvuxbKz2qEbW8AAAAAAAAgD/NT648bKa9u9ZKGrrnRrk8qR8dvVr1mj0AAIA/AACAPwAt673Rpiw+eSK4PfbJYL5EqAw8dzzEuwAAAAAAAAAA+uxEvs/jDD8VP3M+3pWmviJZBz28uaM9AAAAAAAAAADN4588LlOqvBQZhbtM5xU9u/wZvlKt5D0AAIA/AACAPwCzprwrfPA9+ukoPjBjWr6tIVk95h9FPQAAAAAAAAAAJpSqPZZkkT/Cbb09AaWWvpRE0T1TM829AAAAAAAAAADNSLU9gjSFP6jkfb2spLq+sYqQPTXujL0AAAAAAAAAAIAYQr3hPpG63YtrO9knNLaB4DG7+nsmtQAAgD8AAIA/AKc8PeHoibrOHwO48i10ttm+mDqbTh03AACAPwAAgD/aDpA9ceMLu7CG2bvZpI48KwU4vGuudj0AAIA/AACAP+aLGD0pMCO6POypuFUf8TIWF0m7whTGNwAAgD8AAIA/jbyKvcGkYj6NOME9ZACnvl4x9rz2yvo9AAAAAAAAAADmY4894d6ZumLALDUVn+IvtrACuzUtW7QAAIA/AACAP81r370dhYk/67v+vVdRob4pzgm+AguxvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImUf+YOB3bECUhpRSlIwBbJRNHwGMAXSUR0CQ+RBVMmF8dX2UKGgGaAloD0MIeJs3Tkp4ckCUhpRSlGgVTSIBaBZHQJD5O4FzMid1fZQoaAZoCWgPQwhWRE30uTVyQJSGlFKUaBVNQwFoFkdAkPlsR15jY3V9lChoBmgJaA9DCFbSim/oknFAlIaUUpRoFU1MAWgWR0CQ+kv5xiobdX2UKGgGaAloD0MIaXOc24SBbUCUhpRSlGgVTRsBaBZHQJD8X2Cdz4l1fZQoaAZoCWgPQwgn9WVpp3ZtQJSGlFKUaBVNDgFoFkdAkPy+nEVFhHV9lChoBmgJaA9DCC0Kuyi6SXFAlIaUUpRoFU2iAWgWR0CQ/mTj/+85dX2UKGgGaAloD0MIRZ25h4QBbkCUhpRSlGgVTS8BaBZHQJD/YZP2wmp1fZQoaAZoCWgPQwjrrYGtEmZvQJSGlFKUaBVNVwFoFkdAkP+jdtVJc3V9lChoBmgJaA9DCElKehhaJHJAlIaUUpRoFU1EAWgWR0CQ//kadc0MdX2UKGgGaAloD0MIt/C8VOyicECUhpRSlGgVTZMBaBZHQJD/+jafzz51fZQoaAZoCWgPQwg4gem0bilwQJSGlFKUaBVNDgFoFkdAkQCKDTSb6XV9lChoBmgJaA9DCKA3Falw2HBAlIaUUpRoFU1QAWgWR0CRARGKhtcfdX2UKGgGaAloD0MIKlPMQdBNckCUhpRSlGgVTV0BaBZHQJEBXw6QvHt1fZQoaAZoCWgPQwgFpz6QvAhvQJSGlFKUaBVNCwFoFkdAkQHOAd4mkXV9lChoBmgJaA9DCNxLGqP1CnFAlIaUUpRoFU1GAWgWR0CRAnQdCE6DdX2UKGgGaAloD0MI393KEh2VbkCUhpRSlGgVTR0BaBZHQJECglD4QBh1fZQoaAZoCWgPQwghPrDjP/dwQJSGlFKUaBVNKwFoFkdAkQKLCvX9SHV9lChoBmgJaA9DCAVvSKMCM3FAlIaUUpRoFU04AWgWR0CRAsoHs1KodX2UKGgGaAloD0MIctwpHaxscECUhpRSlGgVTQ8BaBZHQJEC8gdOqNp1fZQoaAZoCWgPQwgPtW0Yhe5tQJSGlFKUaBVNKwFoFkdAkQVODvmYB3V9lChoBmgJaA9DCOlkqfV+rm9AlIaUUpRoFU1RAWgWR0CRBt3d9Dx9dX2UKGgGaAloD0MI/+vctFmlcECUhpRSlGgVTQgBaBZHQJEHFQSBbwB1fZQoaAZoCWgPQwjz5nCttr9xQJSGlFKUaBVNEQFoFkdAkQe5zYEns3V9lChoBmgJaA9DCAHaVrOOGHJAlIaUUpRoFU0hAWgWR0CRB7KAJ9iMdX2UKGgGaAloD0MIgsmNIuv9a0CUhpRSlGgVTR8BaBZHQJEI0Q176YV1fZQoaAZoCWgPQwgfgNQmTvRtQJSGlFKUaBVNCQFoFkdAkQmJ4B3iaXV9lChoBmgJaA9DCBHDDmNS1m5AlIaUUpRoFU12AWgWR0CRCayCWeH0dX2UKGgGaAloD0MIc9nonJ/hcECUhpRSlGgVTR4BaBZHQJELA98qnWJ1fZQoaAZoCWgPQwhtVRLZB4RvQJSGlFKUaBVNEAFoFkdAkQsCCSRr8HV9lChoBmgJaA9DCOfgmdAkJ3BAlIaUUpRoFU0aAWgWR0CRCwCQLeANdX2UKGgGaAloD0MIsiyY+KOmcECUhpRSlGgVTXgBaBZHQJELK2JBPbh1fZQoaAZoCWgPQwhcHQBx13xtQJSGlFKUaBVNNwFoFkdAkQvIekpI+XV9lChoBmgJaA9DCAZlGk0uqnFAlIaUUpRoFU1rAWgWR0CRC9YNiH6/dX2UKGgGaAloD0MI2QbuQF10ckCUhpRSlGgVTTABaBZHQJEMD4xk/bF1fZQoaAZoCWgPQwiIY13cRt9rQJSGlFKUaBVNhAFoFkdAkQyj8xbjcXV9lChoBmgJaA9DCIPfhhgvMnBAlIaUUpRoFU0jAWgWR0CRDg+QEIPcdX2UKGgGaAloD0MI56vkYzeRcECUhpRSlGgVTUIBaBZHQJEQuKXOW0J1fZQoaAZoCWgPQwgIyQImcGtPQJSGlFKUaBVLxmgWR0CREODRtxdZdX2UKGgGaAloD0MIXw1QGmoAcECUhpRSlGgVTUsBaBZHQJERWEpRXOp1fZQoaAZoCWgPQwjJVwIp8SNxQJSGlFKUaBVNPwFoFkdAkRGNr9ETg3V9lChoBmgJaA9DCBEAHHs2NnNAlIaUUpRoFU1HAWgWR0CREdpnpSrHdX2UKGgGaAloD0MIrrZif1n4bUCUhpRSlGgVTT0BaBZHQJESna0x/NJ1fZQoaAZoCWgPQwicilQYG0FyQJSGlFKUaBVNLAFoFkdAkRK+jEehf3V9lChoBmgJaA9DCBdi9UdY6HFAlIaUUpRoFU0tAWgWR0CREuQwK0D2dX2UKGgGaAloD0MI51Hxfwe1ckCUhpRSlGgVTQYBaBZHQJES6oybhFV1fZQoaAZoCWgPQwgAj6hQ3QdvQJSGlFKUaBVNMQFoFkdAkRQ4p2ECeXV9lChoBmgJaA9DCMlxp3SwlXJAlIaUUpRoFU0MAWgWR0CRFEPO6d1/dX2UKGgGaAloD0MIcJnTZfHIcUCUhpRSlGgVTSUBaBZHQJEUpNucc2l1fZQoaAZoCWgPQwheKjbmdbFvQJSGlFKUaBVNVwFoFkdAkRU47Njbz3V9lChoBmgJaA9DCIpZL4aycnJAlIaUUpRoFU1WAWgWR0CRLVIPK+zudX2UKGgGaAloD0MIOzYC8bphcECUhpRSlGgVTUkBaBZHQJEt6IN3GGV1fZQoaAZoCWgPQwilpIehlYNxQJSGlFKUaBVNGgFoFkdAkTC8uzyBkXV9lChoBmgJaA9DCLHeqBUmpHBAlIaUUpRoFU0SAWgWR0CRMUH3UQTVdX2UKGgGaAloD0MIpTLFHIQKb0CUhpRSlGgVTSoBaBZHQJEx6PyTY/V1fZQoaAZoCWgPQwiwkSQIF0pwQJSGlFKUaBVNjAFoFkdAkTIDCYTkAHV9lChoBmgJaA9DCGE3bFsUGHNAlIaUUpRoFU0WAWgWR0CRMqF/x2B8dX2UKGgGaAloD0MI8ZwtILRVcUCUhpRSlGgVTRoBaBZHQJEy7DjzZpV1fZQoaAZoCWgPQwgjoMIR5CFwQJSGlFKUaBVNdwFoFkdAkTQWL1mJ33V9lChoBmgJaA9DCIcXRKQmSW1AlIaUUpRoFU0jAWgWR0CRNLylN1yOdX2UKGgGaAloD0MIHyv4bYhwcECUhpRSlGgVTQQBaBZHQJE0860Y0l91fZQoaAZoCWgPQwhfs1w2+rVxQJSGlFKUaBVNLAFoFkdAkTUWHUMG5nV9lChoBmgJaA9DCF6EKcolVnFAlIaUUpRoFU1eAWgWR0CRNT4HHFP0dX2UKGgGaAloD0MIE0VI3c61cECUhpRSlGgVTXABaBZHQJE1fFo+Ofd1fZQoaAZoCWgPQwinyveMRMVvQJSGlFKUaBVN1AFoFkdAkTfenqFAV3V9lChoBmgJaA9DCMYX7fECrXJAlIaUUpRoFU1PAWgWR0CROCv5xiobdX2UKGgGaAloD0MIlL97R03ZcUCUhpRSlGgVTUEBaBZHQJE4c8fV7Qd1fZQoaAZoCWgPQwiY+KOos8pwQJSGlFKUaBVNogFoFkdAkTk/vBrN4nV9lChoBmgJaA9DCBH92vopUnFAlIaUUpRoFU0XAWgWR0CROxb0e2d/dX2UKGgGaAloD0MIGLSQgBFkcUCUhpRSlGgVTS0BaBZHQJE7ImrsByV1fZQoaAZoCWgPQwhgOq3boFtvQJSGlFKUaBVNFwFoFkdAkTwXZTQ3P3V9lChoBmgJaA9DCPSmIhXGXi9AlIaUUpRoFUviaBZHQJE8UYgq3E11fZQoaAZoCWgPQwjZJ4Bi5G9yQJSGlFKUaBVNEgFoFkdAkT0g0oBq9HV9lChoBmgJaA9DCMQI4dHGnG9AlIaUUpRoFU1TAWgWR0CRPRpkPMB7dX2UKGgGaAloD0MI2CyXjY5IcUCUhpRSlGgVTXsBaBZHQJE9YeeWfK91fZQoaAZoCWgPQwiOrPwymFZtQJSGlFKUaBVNGAFoFkdAkT3UleF+NXV9lChoBmgJaA9DCFnaqbncunBAlIaUUpRoFU0KAWgWR0CRPd9/BnBddX2UKGgGaAloD0MIPWGJBxRWcUCUhpRSlGgVTR0BaBZHQJE+PD63y7R1fZQoaAZoCWgPQwjvycNCrcFtQJSGlFKUaBVNMgFoFkdAkT8qhUR3/3V9lChoBmgJaA9DCCjXFMjsfG9AlIaUUpRoFU3BAWgWR0CRQOppN9H+dX2UKGgGaAloD0MI1ljC2hizcECUhpRSlGgVTSsBaBZHQJFBT/hl18t1fZQoaAZoCWgPQwhuFFlr6GlwQJSGlFKUaBVNLQFoFkdAkUHkCih37nV9lChoBmgJaA9DCJxvRPcsI3BAlIaUUpRoFU03AWgWR0CRQfOPvKEGdX2UKGgGaAloD0MI4+DSMWdIcECUhpRSlGgVS/hoFkdAkUOWg8KXwHV9lChoBmgJaA9DCFH1K50PrXFAlIaUUpRoFU0UAWgWR0CRQ6BFNL13dX2UKGgGaAloD0MICanb2ZcscECUhpRSlGgVTUUBaBZHQJFFQFX7tRh1fZQoaAZoCWgPQwj36XjMQP9vQJSGlFKUaBVNKgFoFkdAkUWAVfu1GHV9lChoBmgJaA9DCA3/6QaKqm1AlIaUUpRoFU2OAWgWR0CRRdIe5nUUdX2UKGgGaAloD0MIGF3eHG7BckCUhpRSlGgVTQMBaBZHQJFGQ2itaIN1fZQoaAZoCWgPQwhaRX9o5ulyQJSGlFKUaBVNFgFoFkdAkUZfPomoi3V9lChoBmgJaA9DCKGhf4JL8XFAlIaUUpRoFU0WAWgWR0CRRmrAxi5NdX2UKGgGaAloD0MI6ZjzjP2jb0CUhpRSlGgVTSsBaBZHQJFGgbo8p1B1fZQoaAZoCWgPQwgyzAna5KJxQJSGlFKUaBVNPgFoFkdAkUbEB8x9HHV9lChoBmgJaA9DCLyvyoXKu0tAlIaUUpRoFUvPaBZHQJFHN+XqqwR1fZQoaAZoCWgPQwhJ9Z1flIdyQJSGlFKUaBVNLAFoFkdAkUgWSEDhcnV9lChoBmgJaA9DCGMJa2Nst3FAlIaUUpRoFU1+AWgWR0CRSEL6UJOWdX2UKGgGaAloD0MINj6T/XNfbkCUhpRSlGgVTRcBaBZHQJFJYp+c6Nl1fZQoaAZoCWgPQwgmi/uPjLRwQJSGlFKUaBVNLwFoFkdAkUq6QaJhv3V9lChoBmgJaA9DCLCvdalRuXFAlIaUUpRoFU0LAWgWR0CRS0vn8sMBdX2UKGgGaAloD0MIGqa21EGxb0CUhpRSlGgVTRgBaBZHQJFLrAYYR/V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL21hcmsvcmxfY291cnNlLy51bml0MV92ZW52L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9tYXJrL3JsX2NvdXJzZS8udW5pdDFfdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-56-generic-x86_64-with-glibc2.29 # 62~20.04.1-Ubuntu SMP Tue Nov 22 21:24:20 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:034118fb9a1958df7a104d3d432e5f0d3a99f87594f646a26f01f47bdedc9d73
3
+ size 147557
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f82c65d2790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f82c65d2820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f82c65d28b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f82c65d2940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f82c65d29d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f82c65d2a60>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f82c65d2af0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f82c65d2b80>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f82c65d2c10>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f82c65d2ca0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f82c65d2d30>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f82c65d2dc0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f82c65caa20>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000.0,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1680800758668207288,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL21hcmsvcmxfY291cnNlLy51bml0MV92ZW52L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9tYXJrL3JsX2NvdXJzZS8udW5pdDFfdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANr7o72PSn26BZQUtdGw2q+9tze7mltvNAAAgD8AAIA/AOjYO0i5njkO3vg8viGhvuxbKz2qEbW8AAAAAAAAgD/NT648bKa9u9ZKGrrnRrk8qR8dvVr1mj0AAIA/AACAPwAt673Rpiw+eSK4PfbJYL5EqAw8dzzEuwAAAAAAAAAA+uxEvs/jDD8VP3M+3pWmviJZBz28uaM9AAAAAAAAAADN4588LlOqvBQZhbtM5xU9u/wZvlKt5D0AAIA/AACAPwCzprwrfPA9+ukoPjBjWr6tIVk95h9FPQAAAAAAAAAAJpSqPZZkkT/Cbb09AaWWvpRE0T1TM829AAAAAAAAAADNSLU9gjSFP6jkfb2spLq+sYqQPTXujL0AAAAAAAAAAIAYQr3hPpG63YtrO9knNLaB4DG7+nsmtQAAgD8AAIA/AKc8PeHoibrOHwO48i10ttm+mDqbTh03AACAPwAAgD/aDpA9ceMLu7CG2bvZpI48KwU4vGuudj0AAIA/AACAP+aLGD0pMCO6POypuFUf8TIWF0m7whTGNwAAgD8AAIA/jbyKvcGkYj6NOME9ZACnvl4x9rz2yvo9AAAAAAAAAADmY4894d6ZumLALDUVn+IvtrACuzUtW7QAAIA/AACAP81r370dhYk/67v+vVdRob4pzgm+AguxvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImUf+YOB3bECUhpRSlIwBbJRNHwGMAXSUR0CQ+RBVMmF8dX2UKGgGaAloD0MIeJs3Tkp4ckCUhpRSlGgVTSIBaBZHQJD5O4FzMid1fZQoaAZoCWgPQwhWRE30uTVyQJSGlFKUaBVNQwFoFkdAkPlsR15jY3V9lChoBmgJaA9DCFbSim/oknFAlIaUUpRoFU1MAWgWR0CQ+kv5xiobdX2UKGgGaAloD0MIaXOc24SBbUCUhpRSlGgVTRsBaBZHQJD8X2Cdz4l1fZQoaAZoCWgPQwgn9WVpp3ZtQJSGlFKUaBVNDgFoFkdAkPy+nEVFhHV9lChoBmgJaA9DCC0Kuyi6SXFAlIaUUpRoFU2iAWgWR0CQ/mTj/+85dX2UKGgGaAloD0MIRZ25h4QBbkCUhpRSlGgVTS8BaBZHQJD/YZP2wmp1fZQoaAZoCWgPQwjrrYGtEmZvQJSGlFKUaBVNVwFoFkdAkP+jdtVJc3V9lChoBmgJaA9DCElKehhaJHJAlIaUUpRoFU1EAWgWR0CQ//kadc0MdX2UKGgGaAloD0MIt/C8VOyicECUhpRSlGgVTZMBaBZHQJD/+jafzz51fZQoaAZoCWgPQwg4gem0bilwQJSGlFKUaBVNDgFoFkdAkQCKDTSb6XV9lChoBmgJaA9DCKA3Falw2HBAlIaUUpRoFU1QAWgWR0CRARGKhtcfdX2UKGgGaAloD0MIKlPMQdBNckCUhpRSlGgVTV0BaBZHQJEBXw6QvHt1fZQoaAZoCWgPQwgFpz6QvAhvQJSGlFKUaBVNCwFoFkdAkQHOAd4mkXV9lChoBmgJaA9DCNxLGqP1CnFAlIaUUpRoFU1GAWgWR0CRAnQdCE6DdX2UKGgGaAloD0MI393KEh2VbkCUhpRSlGgVTR0BaBZHQJECglD4QBh1fZQoaAZoCWgPQwghPrDjP/dwQJSGlFKUaBVNKwFoFkdAkQKLCvX9SHV9lChoBmgJaA9DCAVvSKMCM3FAlIaUUpRoFU04AWgWR0CRAsoHs1KodX2UKGgGaAloD0MIctwpHaxscECUhpRSlGgVTQ8BaBZHQJEC8gdOqNp1fZQoaAZoCWgPQwgPtW0Yhe5tQJSGlFKUaBVNKwFoFkdAkQVODvmYB3V9lChoBmgJaA9DCOlkqfV+rm9AlIaUUpRoFU1RAWgWR0CRBt3d9Dx9dX2UKGgGaAloD0MI/+vctFmlcECUhpRSlGgVTQgBaBZHQJEHFQSBbwB1fZQoaAZoCWgPQwjz5nCttr9xQJSGlFKUaBVNEQFoFkdAkQe5zYEns3V9lChoBmgJaA9DCAHaVrOOGHJAlIaUUpRoFU0hAWgWR0CRB7KAJ9iMdX2UKGgGaAloD0MIgsmNIuv9a0CUhpRSlGgVTR8BaBZHQJEI0Q176YV1fZQoaAZoCWgPQwgfgNQmTvRtQJSGlFKUaBVNCQFoFkdAkQmJ4B3iaXV9lChoBmgJaA9DCBHDDmNS1m5AlIaUUpRoFU12AWgWR0CRCayCWeH0dX2UKGgGaAloD0MIc9nonJ/hcECUhpRSlGgVTR4BaBZHQJELA98qnWJ1fZQoaAZoCWgPQwhtVRLZB4RvQJSGlFKUaBVNEAFoFkdAkQsCCSRr8HV9lChoBmgJaA9DCOfgmdAkJ3BAlIaUUpRoFU0aAWgWR0CRCwCQLeANdX2UKGgGaAloD0MIsiyY+KOmcECUhpRSlGgVTXgBaBZHQJELK2JBPbh1fZQoaAZoCWgPQwhcHQBx13xtQJSGlFKUaBVNNwFoFkdAkQvIekpI+XV9lChoBmgJaA9DCAZlGk0uqnFAlIaUUpRoFU1rAWgWR0CRC9YNiH6/dX2UKGgGaAloD0MI2QbuQF10ckCUhpRSlGgVTTABaBZHQJEMD4xk/bF1fZQoaAZoCWgPQwiIY13cRt9rQJSGlFKUaBVNhAFoFkdAkQyj8xbjcXV9lChoBmgJaA9DCIPfhhgvMnBAlIaUUpRoFU0jAWgWR0CRDg+QEIPcdX2UKGgGaAloD0MI56vkYzeRcECUhpRSlGgVTUIBaBZHQJEQuKXOW0J1fZQoaAZoCWgPQwgIyQImcGtPQJSGlFKUaBVLxmgWR0CREODRtxdZdX2UKGgGaAloD0MIXw1QGmoAcECUhpRSlGgVTUsBaBZHQJERWEpRXOp1fZQoaAZoCWgPQwjJVwIp8SNxQJSGlFKUaBVNPwFoFkdAkRGNr9ETg3V9lChoBmgJaA9DCBEAHHs2NnNAlIaUUpRoFU1HAWgWR0CREdpnpSrHdX2UKGgGaAloD0MIrrZif1n4bUCUhpRSlGgVTT0BaBZHQJESna0x/NJ1fZQoaAZoCWgPQwicilQYG0FyQJSGlFKUaBVNLAFoFkdAkRK+jEehf3V9lChoBmgJaA9DCBdi9UdY6HFAlIaUUpRoFU0tAWgWR0CREuQwK0D2dX2UKGgGaAloD0MI51Hxfwe1ckCUhpRSlGgVTQYBaBZHQJES6oybhFV1fZQoaAZoCWgPQwgAj6hQ3QdvQJSGlFKUaBVNMQFoFkdAkRQ4p2ECeXV9lChoBmgJaA9DCMlxp3SwlXJAlIaUUpRoFU0MAWgWR0CRFEPO6d1/dX2UKGgGaAloD0MIcJnTZfHIcUCUhpRSlGgVTSUBaBZHQJEUpNucc2l1fZQoaAZoCWgPQwheKjbmdbFvQJSGlFKUaBVNVwFoFkdAkRU47Njbz3V9lChoBmgJaA9DCIpZL4aycnJAlIaUUpRoFU1WAWgWR0CRLVIPK+zudX2UKGgGaAloD0MIOzYC8bphcECUhpRSlGgVTUkBaBZHQJEt6IN3GGV1fZQoaAZoCWgPQwilpIehlYNxQJSGlFKUaBVNGgFoFkdAkTC8uzyBkXV9lChoBmgJaA9DCLHeqBUmpHBAlIaUUpRoFU0SAWgWR0CRMUH3UQTVdX2UKGgGaAloD0MIpTLFHIQKb0CUhpRSlGgVTSoBaBZHQJEx6PyTY/V1fZQoaAZoCWgPQwiwkSQIF0pwQJSGlFKUaBVNjAFoFkdAkTIDCYTkAHV9lChoBmgJaA9DCGE3bFsUGHNAlIaUUpRoFU0WAWgWR0CRMqF/x2B8dX2UKGgGaAloD0MI8ZwtILRVcUCUhpRSlGgVTRoBaBZHQJEy7DjzZpV1fZQoaAZoCWgPQwgjoMIR5CFwQJSGlFKUaBVNdwFoFkdAkTQWL1mJ33V9lChoBmgJaA9DCIcXRKQmSW1AlIaUUpRoFU0jAWgWR0CRNLylN1yOdX2UKGgGaAloD0MIHyv4bYhwcECUhpRSlGgVTQQBaBZHQJE0860Y0l91fZQoaAZoCWgPQwhfs1w2+rVxQJSGlFKUaBVNLAFoFkdAkTUWHUMG5nV9lChoBmgJaA9DCF6EKcolVnFAlIaUUpRoFU1eAWgWR0CRNT4HHFP0dX2UKGgGaAloD0MIE0VI3c61cECUhpRSlGgVTXABaBZHQJE1fFo+Ofd1fZQoaAZoCWgPQwinyveMRMVvQJSGlFKUaBVN1AFoFkdAkTfenqFAV3V9lChoBmgJaA9DCMYX7fECrXJAlIaUUpRoFU1PAWgWR0CROCv5xiobdX2UKGgGaAloD0MIlL97R03ZcUCUhpRSlGgVTUEBaBZHQJE4c8fV7Qd1fZQoaAZoCWgPQwiY+KOos8pwQJSGlFKUaBVNogFoFkdAkTk/vBrN4nV9lChoBmgJaA9DCBH92vopUnFAlIaUUpRoFU0XAWgWR0CROxb0e2d/dX2UKGgGaAloD0MIGLSQgBFkcUCUhpRSlGgVTS0BaBZHQJE7ImrsByV1fZQoaAZoCWgPQwhgOq3boFtvQJSGlFKUaBVNFwFoFkdAkTwXZTQ3P3V9lChoBmgJaA9DCPSmIhXGXi9AlIaUUpRoFUviaBZHQJE8UYgq3E11fZQoaAZoCWgPQwjZJ4Bi5G9yQJSGlFKUaBVNEgFoFkdAkT0g0oBq9HV9lChoBmgJaA9DCMQI4dHGnG9AlIaUUpRoFU1TAWgWR0CRPRpkPMB7dX2UKGgGaAloD0MI2CyXjY5IcUCUhpRSlGgVTXsBaBZHQJE9YeeWfK91fZQoaAZoCWgPQwiOrPwymFZtQJSGlFKUaBVNGAFoFkdAkT3UleF+NXV9lChoBmgJaA9DCFnaqbncunBAlIaUUpRoFU0KAWgWR0CRPd9/BnBddX2UKGgGaAloD0MIPWGJBxRWcUCUhpRSlGgVTR0BaBZHQJE+PD63y7R1fZQoaAZoCWgPQwjvycNCrcFtQJSGlFKUaBVNMgFoFkdAkT8qhUR3/3V9lChoBmgJaA9DCCjXFMjsfG9AlIaUUpRoFU3BAWgWR0CRQOppN9H+dX2UKGgGaAloD0MI1ljC2hizcECUhpRSlGgVTSsBaBZHQJFBT/hl18t1fZQoaAZoCWgPQwhuFFlr6GlwQJSGlFKUaBVNLQFoFkdAkUHkCih37nV9lChoBmgJaA9DCJxvRPcsI3BAlIaUUpRoFU03AWgWR0CRQfOPvKEGdX2UKGgGaAloD0MI4+DSMWdIcECUhpRSlGgVS/hoFkdAkUOWg8KXwHV9lChoBmgJaA9DCFH1K50PrXFAlIaUUpRoFU0UAWgWR0CRQ6BFNL13dX2UKGgGaAloD0MICanb2ZcscECUhpRSlGgVTUUBaBZHQJFFQFX7tRh1fZQoaAZoCWgPQwj36XjMQP9vQJSGlFKUaBVNKgFoFkdAkUWAVfu1GHV9lChoBmgJaA9DCA3/6QaKqm1AlIaUUpRoFU2OAWgWR0CRRdIe5nUUdX2UKGgGaAloD0MIGF3eHG7BckCUhpRSlGgVTQMBaBZHQJFGQ2itaIN1fZQoaAZoCWgPQwhaRX9o5ulyQJSGlFKUaBVNFgFoFkdAkUZfPomoi3V9lChoBmgJaA9DCKGhf4JL8XFAlIaUUpRoFU0WAWgWR0CRRmrAxi5NdX2UKGgGaAloD0MI6ZjzjP2jb0CUhpRSlGgVTSsBaBZHQJFGgbo8p1B1fZQoaAZoCWgPQwgyzAna5KJxQJSGlFKUaBVNPgFoFkdAkUbEB8x9HHV9lChoBmgJaA9DCLyvyoXKu0tAlIaUUpRoFUvPaBZHQJFHN+XqqwR1fZQoaAZoCWgPQwhJ9Z1flIdyQJSGlFKUaBVNLAFoFkdAkUgWSEDhcnV9lChoBmgJaA9DCGMJa2Nst3FAlIaUUpRoFU1+AWgWR0CRSEL6UJOWdX2UKGgGaAloD0MINj6T/XNfbkCUhpRSlGgVTRcBaBZHQJFJYp+c6Nl1fZQoaAZoCWgPQwgmi/uPjLRwQJSGlFKUaBVNLwFoFkdAkUq6QaJhv3V9lChoBmgJaA9DCLCvdalRuXFAlIaUUpRoFU0LAWgWR0CRS0vn8sMBdX2UKGgGaAloD0MIGqa21EGxb0CUhpRSlGgVTRgBaBZHQJFLrAYYR/V1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL21hcmsvcmxfY291cnNlLy51bml0MV92ZW52L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9tYXJrL3JsX2NvdXJzZS8udW5pdDFfdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b83d3fa5f9331a65de1123bf24a8d233f9776c684baf107a751cb3e790ebbf21
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc7cda74dc2e6d8672c7cf834ccd4599cfe902ca60eba4e5c4bc0614e12a496d
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-56-generic-x86_64-with-glibc2.29 # 62~20.04.1-Ubuntu SMP Tue Nov 22 21:24:20 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.2
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 269.04988551858486, "std_reward": 15.705051021348487, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-28T09:43:46.688311"}
 
1
+ {"mean_reward": 267.14583177404376, "std_reward": 24.00774900874541, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-06T13:24:39.625447"}