Upload 16 files
Browse files- .gitattributes +35 -35
- 1_Pooling/config.json +10 -0
- README.md +2187 -0
- config.json +101 -0
- config_sentence_transformers.json +9 -0
- configuration_nvembed.py +90 -0
- instructions.json +80 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +311 -0
- modeling_nvembed.py +441 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +43 -0
.gitattributes
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 4096,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": false
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,2187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
model-index:
|
5 |
+
- name: NV-Embed-v2
|
6 |
+
results:
|
7 |
+
- dataset:
|
8 |
+
config: en
|
9 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
10 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
11 |
+
split: test
|
12 |
+
type: mteb/amazon_counterfactual
|
13 |
+
metrics:
|
14 |
+
- type: accuracy
|
15 |
+
value: 94.28358208955224
|
16 |
+
- type: accuracy_stderr
|
17 |
+
value: 0.40076780842082305
|
18 |
+
- type: ap
|
19 |
+
value: 76.49097318319616
|
20 |
+
- type: ap_stderr
|
21 |
+
value: 1.2418692675183929
|
22 |
+
- type: f1
|
23 |
+
value: 91.41982003001168
|
24 |
+
- type: f1_stderr
|
25 |
+
value: 0.5043921413093579
|
26 |
+
- type: main_score
|
27 |
+
value: 94.28358208955224
|
28 |
+
task:
|
29 |
+
type: Classification
|
30 |
+
- dataset:
|
31 |
+
config: default
|
32 |
+
name: MTEB AmazonPolarityClassification
|
33 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
34 |
+
split: test
|
35 |
+
type: mteb/amazon_polarity
|
36 |
+
metrics:
|
37 |
+
- type: accuracy
|
38 |
+
value: 97.74185000000001
|
39 |
+
- type: accuracy_stderr
|
40 |
+
value: 0.07420471683120942
|
41 |
+
- type: ap
|
42 |
+
value: 96.4737144875525
|
43 |
+
- type: ap_stderr
|
44 |
+
value: 0.2977518241541558
|
45 |
+
- type: f1
|
46 |
+
value: 97.7417581594921
|
47 |
+
- type: f1_stderr
|
48 |
+
value: 0.07428763617010377
|
49 |
+
- type: main_score
|
50 |
+
value: 97.74185000000001
|
51 |
+
task:
|
52 |
+
type: Classification
|
53 |
+
- dataset:
|
54 |
+
config: en
|
55 |
+
name: MTEB AmazonReviewsClassification (en)
|
56 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
57 |
+
split: test
|
58 |
+
type: mteb/amazon_reviews_multi
|
59 |
+
metrics:
|
60 |
+
- type: accuracy
|
61 |
+
value: 63.96000000000001
|
62 |
+
- type: accuracy_stderr
|
63 |
+
value: 1.815555011559825
|
64 |
+
- type: f1
|
65 |
+
value: 62.49361841640459
|
66 |
+
- type: f1_stderr
|
67 |
+
value: 2.829339314126457
|
68 |
+
- type: main_score
|
69 |
+
value: 63.96000000000001
|
70 |
+
task:
|
71 |
+
type: Classification
|
72 |
+
- dataset:
|
73 |
+
config: default
|
74 |
+
name: MTEB ArguAna
|
75 |
+
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
|
76 |
+
split: test
|
77 |
+
type: mteb/arguana
|
78 |
+
metrics:
|
79 |
+
- type: map_at_1
|
80 |
+
value: 46.515
|
81 |
+
- type: map_at_10
|
82 |
+
value: 62.392
|
83 |
+
- type: map_at_100
|
84 |
+
value: 62.732
|
85 |
+
- type: map_at_1000
|
86 |
+
value: 62.733000000000004
|
87 |
+
- type: map_at_3
|
88 |
+
value: 58.701
|
89 |
+
- type: map_at_5
|
90 |
+
value: 61.027
|
91 |
+
- type: mrr_at_1
|
92 |
+
value: 0.0
|
93 |
+
- type: mrr_at_10
|
94 |
+
value: 0.0
|
95 |
+
- type: mrr_at_100
|
96 |
+
value: 0.0
|
97 |
+
- type: mrr_at_1000
|
98 |
+
value: 0.0
|
99 |
+
- type: mrr_at_3
|
100 |
+
value: 0.0
|
101 |
+
- type: mrr_at_5
|
102 |
+
value: 0.0
|
103 |
+
- type: ndcg_at_1
|
104 |
+
value: 46.515
|
105 |
+
- type: ndcg_at_10
|
106 |
+
value: 70.074
|
107 |
+
- type: ndcg_at_100
|
108 |
+
value: 71.395
|
109 |
+
- type: ndcg_at_1000
|
110 |
+
value: 71.405
|
111 |
+
- type: ndcg_at_3
|
112 |
+
value: 62.643
|
113 |
+
- type: ndcg_at_5
|
114 |
+
value: 66.803
|
115 |
+
- type: precision_at_1
|
116 |
+
value: 46.515
|
117 |
+
- type: precision_at_10
|
118 |
+
value: 9.41
|
119 |
+
- type: precision_at_100
|
120 |
+
value: 0.996
|
121 |
+
- type: precision_at_1000
|
122 |
+
value: 0.1
|
123 |
+
- type: precision_at_3
|
124 |
+
value: 24.68
|
125 |
+
- type: precision_at_5
|
126 |
+
value: 16.814
|
127 |
+
- type: recall_at_1
|
128 |
+
value: 46.515
|
129 |
+
- type: recall_at_10
|
130 |
+
value: 94.097
|
131 |
+
- type: recall_at_100
|
132 |
+
value: 99.57300000000001
|
133 |
+
- type: recall_at_1000
|
134 |
+
value: 99.644
|
135 |
+
- type: recall_at_3
|
136 |
+
value: 74.03999999999999
|
137 |
+
- type: recall_at_5
|
138 |
+
value: 84.068
|
139 |
+
- type: main_score
|
140 |
+
value: 70.074
|
141 |
+
task:
|
142 |
+
type: Retrieval
|
143 |
+
- dataset:
|
144 |
+
config: default
|
145 |
+
name: MTEB ArxivClusteringP2P
|
146 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
147 |
+
split: test
|
148 |
+
type: mteb/arxiv-clustering-p2p
|
149 |
+
metrics:
|
150 |
+
- type: main_score
|
151 |
+
value: 55.79933795955242
|
152 |
+
- type: v_measure
|
153 |
+
value: 55.79933795955242
|
154 |
+
- type: v_measure_std
|
155 |
+
value: 14.575108141916148
|
156 |
+
task:
|
157 |
+
type: Clustering
|
158 |
+
- dataset:
|
159 |
+
config: default
|
160 |
+
name: MTEB ArxivClusteringS2S
|
161 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
162 |
+
split: test
|
163 |
+
type: mteb/arxiv-clustering-s2s
|
164 |
+
metrics:
|
165 |
+
- type: main_score
|
166 |
+
value: 51.262845995850334
|
167 |
+
- type: v_measure
|
168 |
+
value: 51.262845995850334
|
169 |
+
- type: v_measure_std
|
170 |
+
value: 14.727824473104173
|
171 |
+
task:
|
172 |
+
type: Clustering
|
173 |
+
- dataset:
|
174 |
+
config: default
|
175 |
+
name: MTEB AskUbuntuDupQuestions
|
176 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
177 |
+
split: test
|
178 |
+
type: mteb/askubuntudupquestions-reranking
|
179 |
+
metrics:
|
180 |
+
- type: map
|
181 |
+
value: 67.46477327480808
|
182 |
+
- type: mrr
|
183 |
+
value: 79.50160488941653
|
184 |
+
- type: main_score
|
185 |
+
value: 67.46477327480808
|
186 |
+
task:
|
187 |
+
type: Reranking
|
188 |
+
- dataset:
|
189 |
+
config: default
|
190 |
+
name: MTEB BIOSSES
|
191 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
192 |
+
split: test
|
193 |
+
type: mteb/biosses-sts
|
194 |
+
metrics:
|
195 |
+
- type: cosine_pearson
|
196 |
+
value: 89.74311007980987
|
197 |
+
- type: cosine_spearman
|
198 |
+
value: 87.41644967443246
|
199 |
+
- type: manhattan_pearson
|
200 |
+
value: 88.57457108347744
|
201 |
+
- type: manhattan_spearman
|
202 |
+
value: 87.59295972042997
|
203 |
+
- type: euclidean_pearson
|
204 |
+
value: 88.27108977118459
|
205 |
+
- type: euclidean_spearman
|
206 |
+
value: 87.41644967443246
|
207 |
+
- type: main_score
|
208 |
+
value: 87.41644967443246
|
209 |
+
task:
|
210 |
+
type: STS
|
211 |
+
- dataset:
|
212 |
+
config: default
|
213 |
+
name: MTEB Banking77Classification
|
214 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
215 |
+
split: test
|
216 |
+
type: mteb/banking77
|
217 |
+
metrics:
|
218 |
+
- type: accuracy
|
219 |
+
value: 92.41558441558443
|
220 |
+
- type: accuracy_stderr
|
221 |
+
value: 0.37701502251934443
|
222 |
+
- type: f1
|
223 |
+
value: 92.38130170447671
|
224 |
+
- type: f1_stderr
|
225 |
+
value: 0.39115151225617767
|
226 |
+
- type: main_score
|
227 |
+
value: 92.41558441558443
|
228 |
+
task:
|
229 |
+
type: Classification
|
230 |
+
- dataset:
|
231 |
+
config: default
|
232 |
+
name: MTEB BiorxivClusteringP2P
|
233 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
234 |
+
split: test
|
235 |
+
type: mteb/biorxiv-clustering-p2p
|
236 |
+
metrics:
|
237 |
+
- type: main_score
|
238 |
+
value: 54.08649516394218
|
239 |
+
- type: v_measure
|
240 |
+
value: 54.08649516394218
|
241 |
+
- type: v_measure_std
|
242 |
+
value: 0.5303233693045373
|
243 |
+
task:
|
244 |
+
type: Clustering
|
245 |
+
- dataset:
|
246 |
+
config: default
|
247 |
+
name: MTEB BiorxivClusteringS2S
|
248 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
249 |
+
split: test
|
250 |
+
type: mteb/biorxiv-clustering-s2s
|
251 |
+
metrics:
|
252 |
+
- type: main_score
|
253 |
+
value: 49.60352214167779
|
254 |
+
- type: v_measure
|
255 |
+
value: 49.60352214167779
|
256 |
+
- type: v_measure_std
|
257 |
+
value: 0.7176198612516721
|
258 |
+
task:
|
259 |
+
type: Clustering
|
260 |
+
- dataset:
|
261 |
+
config: default
|
262 |
+
name: MTEB CQADupstackRetrieval
|
263 |
+
revision: 46989137a86843e03a6195de44b09deda022eec7
|
264 |
+
split: test
|
265 |
+
type: CQADupstackRetrieval_is_a_combined_dataset
|
266 |
+
metrics:
|
267 |
+
- type: map_at_1
|
268 |
+
value: 31.913249999999998
|
269 |
+
- type: map_at_10
|
270 |
+
value: 43.87733333333334
|
271 |
+
- type: map_at_100
|
272 |
+
value: 45.249916666666664
|
273 |
+
- type: map_at_1000
|
274 |
+
value: 45.350583333333326
|
275 |
+
- type: map_at_3
|
276 |
+
value: 40.316833333333335
|
277 |
+
- type: map_at_5
|
278 |
+
value: 42.317083333333336
|
279 |
+
- type: mrr_at_1
|
280 |
+
value: 0.0
|
281 |
+
- type: mrr_at_10
|
282 |
+
value: 0.0
|
283 |
+
- type: mrr_at_100
|
284 |
+
value: 0.0
|
285 |
+
- type: mrr_at_1000
|
286 |
+
value: 0.0
|
287 |
+
- type: mrr_at_3
|
288 |
+
value: 0.0
|
289 |
+
- type: mrr_at_5
|
290 |
+
value: 0.0
|
291 |
+
- type: ndcg_at_1
|
292 |
+
value: 38.30616666666667
|
293 |
+
- type: ndcg_at_10
|
294 |
+
value: 50.24175000000001
|
295 |
+
- type: ndcg_at_100
|
296 |
+
value: 55.345333333333336
|
297 |
+
- type: ndcg_at_1000
|
298 |
+
value: 56.91225000000001
|
299 |
+
- type: ndcg_at_3
|
300 |
+
value: 44.67558333333333
|
301 |
+
- type: ndcg_at_5
|
302 |
+
value: 47.32333333333334
|
303 |
+
- type: precision_at_1
|
304 |
+
value: 38.30616666666667
|
305 |
+
- type: precision_at_10
|
306 |
+
value: 9.007416666666666
|
307 |
+
- type: precision_at_100
|
308 |
+
value: 1.3633333333333333
|
309 |
+
- type: precision_at_1000
|
310 |
+
value: 0.16691666666666666
|
311 |
+
- type: precision_at_3
|
312 |
+
value: 20.895666666666667
|
313 |
+
- type: precision_at_5
|
314 |
+
value: 14.871666666666666
|
315 |
+
- type: recall_at_1
|
316 |
+
value: 31.913249999999998
|
317 |
+
- type: recall_at_10
|
318 |
+
value: 64.11891666666666
|
319 |
+
- type: recall_at_100
|
320 |
+
value: 85.91133333333333
|
321 |
+
- type: recall_at_1000
|
322 |
+
value: 96.28225
|
323 |
+
- type: recall_at_3
|
324 |
+
value: 48.54749999999999
|
325 |
+
- type: recall_at_5
|
326 |
+
value: 55.44283333333334
|
327 |
+
- type: main_score
|
328 |
+
value: 50.24175000000001
|
329 |
+
task:
|
330 |
+
type: Retrieval
|
331 |
+
- dataset:
|
332 |
+
config: default
|
333 |
+
name: MTEB ClimateFEVER
|
334 |
+
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
|
335 |
+
split: test
|
336 |
+
type: mteb/climate-fever
|
337 |
+
metrics:
|
338 |
+
- type: map_at_1
|
339 |
+
value: 19.556
|
340 |
+
- type: map_at_10
|
341 |
+
value: 34.623
|
342 |
+
- type: map_at_100
|
343 |
+
value: 36.97
|
344 |
+
- type: map_at_1000
|
345 |
+
value: 37.123
|
346 |
+
- type: map_at_3
|
347 |
+
value: 28.904999999999998
|
348 |
+
- type: map_at_5
|
349 |
+
value: 31.955
|
350 |
+
- type: mrr_at_1
|
351 |
+
value: 0.0
|
352 |
+
- type: mrr_at_10
|
353 |
+
value: 0.0
|
354 |
+
- type: mrr_at_100
|
355 |
+
value: 0.0
|
356 |
+
- type: mrr_at_1000
|
357 |
+
value: 0.0
|
358 |
+
- type: mrr_at_3
|
359 |
+
value: 0.0
|
360 |
+
- type: mrr_at_5
|
361 |
+
value: 0.0
|
362 |
+
- type: ndcg_at_1
|
363 |
+
value: 44.104
|
364 |
+
- type: ndcg_at_10
|
365 |
+
value: 45.388
|
366 |
+
- type: ndcg_at_100
|
367 |
+
value: 52.793
|
368 |
+
- type: ndcg_at_1000
|
369 |
+
value: 55.108999999999995
|
370 |
+
- type: ndcg_at_3
|
371 |
+
value: 38.604
|
372 |
+
- type: ndcg_at_5
|
373 |
+
value: 40.806
|
374 |
+
- type: precision_at_1
|
375 |
+
value: 44.104
|
376 |
+
- type: precision_at_10
|
377 |
+
value: 14.143
|
378 |
+
- type: precision_at_100
|
379 |
+
value: 2.2190000000000003
|
380 |
+
- type: precision_at_1000
|
381 |
+
value: 0.266
|
382 |
+
- type: precision_at_3
|
383 |
+
value: 29.316
|
384 |
+
- type: precision_at_5
|
385 |
+
value: 21.98
|
386 |
+
- type: recall_at_1
|
387 |
+
value: 19.556
|
388 |
+
- type: recall_at_10
|
389 |
+
value: 52.120999999999995
|
390 |
+
- type: recall_at_100
|
391 |
+
value: 76.509
|
392 |
+
- type: recall_at_1000
|
393 |
+
value: 89.029
|
394 |
+
- type: recall_at_3
|
395 |
+
value: 34.919
|
396 |
+
- type: recall_at_5
|
397 |
+
value: 42.18
|
398 |
+
- type: main_score
|
399 |
+
value: 45.388
|
400 |
+
task:
|
401 |
+
type: Retrieval
|
402 |
+
- dataset:
|
403 |
+
config: default
|
404 |
+
name: MTEB DBPedia
|
405 |
+
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
|
406 |
+
split: test
|
407 |
+
type: mteb/dbpedia
|
408 |
+
metrics:
|
409 |
+
- type: map_at_1
|
410 |
+
value: 10.714
|
411 |
+
- type: map_at_10
|
412 |
+
value: 25.814999999999998
|
413 |
+
- type: map_at_100
|
414 |
+
value: 37.845
|
415 |
+
- type: map_at_1000
|
416 |
+
value: 39.974
|
417 |
+
- type: map_at_3
|
418 |
+
value: 17.201
|
419 |
+
- type: map_at_5
|
420 |
+
value: 21.062
|
421 |
+
- type: mrr_at_1
|
422 |
+
value: 0.0
|
423 |
+
- type: mrr_at_10
|
424 |
+
value: 0.0
|
425 |
+
- type: mrr_at_100
|
426 |
+
value: 0.0
|
427 |
+
- type: mrr_at_1000
|
428 |
+
value: 0.0
|
429 |
+
- type: mrr_at_3
|
430 |
+
value: 0.0
|
431 |
+
- type: mrr_at_5
|
432 |
+
value: 0.0
|
433 |
+
- type: ndcg_at_1
|
434 |
+
value: 66.0
|
435 |
+
- type: ndcg_at_10
|
436 |
+
value: 53.496
|
437 |
+
- type: ndcg_at_100
|
438 |
+
value: 58.053
|
439 |
+
- type: ndcg_at_1000
|
440 |
+
value: 64.886
|
441 |
+
- type: ndcg_at_3
|
442 |
+
value: 57.656
|
443 |
+
- type: ndcg_at_5
|
444 |
+
value: 55.900000000000006
|
445 |
+
- type: precision_at_1
|
446 |
+
value: 77.25
|
447 |
+
- type: precision_at_10
|
448 |
+
value: 43.65
|
449 |
+
- type: precision_at_100
|
450 |
+
value: 13.76
|
451 |
+
- type: precision_at_1000
|
452 |
+
value: 2.5940000000000003
|
453 |
+
- type: precision_at_3
|
454 |
+
value: 61.0
|
455 |
+
- type: precision_at_5
|
456 |
+
value: 54.65
|
457 |
+
- type: recall_at_1
|
458 |
+
value: 10.714
|
459 |
+
- type: recall_at_10
|
460 |
+
value: 31.173000000000002
|
461 |
+
- type: recall_at_100
|
462 |
+
value: 63.404
|
463 |
+
- type: recall_at_1000
|
464 |
+
value: 85.874
|
465 |
+
- type: recall_at_3
|
466 |
+
value: 18.249000000000002
|
467 |
+
- type: recall_at_5
|
468 |
+
value: 23.69
|
469 |
+
- type: main_score
|
470 |
+
value: 53.496
|
471 |
+
task:
|
472 |
+
type: Retrieval
|
473 |
+
- dataset:
|
474 |
+
config: default
|
475 |
+
name: MTEB EmotionClassification
|
476 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
477 |
+
split: test
|
478 |
+
type: mteb/emotion
|
479 |
+
metrics:
|
480 |
+
- type: accuracy
|
481 |
+
value: 93.38499999999999
|
482 |
+
- type: accuracy_stderr
|
483 |
+
value: 0.13793114224133846
|
484 |
+
- type: f1
|
485 |
+
value: 90.12141028353496
|
486 |
+
- type: f1_stderr
|
487 |
+
value: 0.174640257706043
|
488 |
+
- type: main_score
|
489 |
+
value: 93.38499999999999
|
490 |
+
task:
|
491 |
+
type: Classification
|
492 |
+
- dataset:
|
493 |
+
config: default
|
494 |
+
name: MTEB FEVER
|
495 |
+
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
|
496 |
+
split: test
|
497 |
+
type: mteb/fever
|
498 |
+
metrics:
|
499 |
+
- type: map_at_1
|
500 |
+
value: 84.66900000000001
|
501 |
+
- type: map_at_10
|
502 |
+
value: 91.52799999999999
|
503 |
+
- type: map_at_100
|
504 |
+
value: 91.721
|
505 |
+
- type: map_at_1000
|
506 |
+
value: 91.73
|
507 |
+
- type: map_at_3
|
508 |
+
value: 90.752
|
509 |
+
- type: map_at_5
|
510 |
+
value: 91.262
|
511 |
+
- type: mrr_at_1
|
512 |
+
value: 0.0
|
513 |
+
- type: mrr_at_10
|
514 |
+
value: 0.0
|
515 |
+
- type: mrr_at_100
|
516 |
+
value: 0.0
|
517 |
+
- type: mrr_at_1000
|
518 |
+
value: 0.0
|
519 |
+
- type: mrr_at_3
|
520 |
+
value: 0.0
|
521 |
+
- type: mrr_at_5
|
522 |
+
value: 0.0
|
523 |
+
- type: ndcg_at_1
|
524 |
+
value: 91.20899999999999
|
525 |
+
- type: ndcg_at_10
|
526 |
+
value: 93.74900000000001
|
527 |
+
- type: ndcg_at_100
|
528 |
+
value: 94.279
|
529 |
+
- type: ndcg_at_1000
|
530 |
+
value: 94.408
|
531 |
+
- type: ndcg_at_3
|
532 |
+
value: 92.923
|
533 |
+
- type: ndcg_at_5
|
534 |
+
value: 93.376
|
535 |
+
- type: precision_at_1
|
536 |
+
value: 91.20899999999999
|
537 |
+
- type: precision_at_10
|
538 |
+
value: 11.059
|
539 |
+
- type: precision_at_100
|
540 |
+
value: 1.1560000000000001
|
541 |
+
- type: precision_at_1000
|
542 |
+
value: 0.11800000000000001
|
543 |
+
- type: precision_at_3
|
544 |
+
value: 35.129
|
545 |
+
- type: precision_at_5
|
546 |
+
value: 21.617
|
547 |
+
- type: recall_at_1
|
548 |
+
value: 84.66900000000001
|
549 |
+
- type: recall_at_10
|
550 |
+
value: 97.03399999999999
|
551 |
+
- type: recall_at_100
|
552 |
+
value: 98.931
|
553 |
+
- type: recall_at_1000
|
554 |
+
value: 99.65899999999999
|
555 |
+
- type: recall_at_3
|
556 |
+
value: 94.76299999999999
|
557 |
+
- type: recall_at_5
|
558 |
+
value: 95.968
|
559 |
+
- type: main_score
|
560 |
+
value: 93.74900000000001
|
561 |
+
task:
|
562 |
+
type: Retrieval
|
563 |
+
- dataset:
|
564 |
+
config: default
|
565 |
+
name: MTEB FiQA2018
|
566 |
+
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
|
567 |
+
split: test
|
568 |
+
type: mteb/fiqa
|
569 |
+
metrics:
|
570 |
+
- type: map_at_1
|
571 |
+
value: 34.866
|
572 |
+
- type: map_at_10
|
573 |
+
value: 58.06099999999999
|
574 |
+
- type: map_at_100
|
575 |
+
value: 60.028999999999996
|
576 |
+
- type: map_at_1000
|
577 |
+
value: 60.119
|
578 |
+
- type: map_at_3
|
579 |
+
value: 51.304
|
580 |
+
- type: map_at_5
|
581 |
+
value: 55.054
|
582 |
+
- type: mrr_at_1
|
583 |
+
value: 0.0
|
584 |
+
- type: mrr_at_10
|
585 |
+
value: 0.0
|
586 |
+
- type: mrr_at_100
|
587 |
+
value: 0.0
|
588 |
+
- type: mrr_at_1000
|
589 |
+
value: 0.0
|
590 |
+
- type: mrr_at_3
|
591 |
+
value: 0.0
|
592 |
+
- type: mrr_at_5
|
593 |
+
value: 0.0
|
594 |
+
- type: ndcg_at_1
|
595 |
+
value: 64.815
|
596 |
+
- type: ndcg_at_10
|
597 |
+
value: 65.729
|
598 |
+
- type: ndcg_at_100
|
599 |
+
value: 71.14
|
600 |
+
- type: ndcg_at_1000
|
601 |
+
value: 72.336
|
602 |
+
- type: ndcg_at_3
|
603 |
+
value: 61.973
|
604 |
+
- type: ndcg_at_5
|
605 |
+
value: 62.858000000000004
|
606 |
+
- type: precision_at_1
|
607 |
+
value: 64.815
|
608 |
+
- type: precision_at_10
|
609 |
+
value: 17.87
|
610 |
+
- type: precision_at_100
|
611 |
+
value: 2.373
|
612 |
+
- type: precision_at_1000
|
613 |
+
value: 0.258
|
614 |
+
- type: precision_at_3
|
615 |
+
value: 41.152
|
616 |
+
- type: precision_at_5
|
617 |
+
value: 29.568
|
618 |
+
- type: recall_at_1
|
619 |
+
value: 34.866
|
620 |
+
- type: recall_at_10
|
621 |
+
value: 72.239
|
622 |
+
- type: recall_at_100
|
623 |
+
value: 91.19
|
624 |
+
- type: recall_at_1000
|
625 |
+
value: 98.154
|
626 |
+
- type: recall_at_3
|
627 |
+
value: 56.472
|
628 |
+
- type: recall_at_5
|
629 |
+
value: 63.157
|
630 |
+
- type: main_score
|
631 |
+
value: 65.729
|
632 |
+
task:
|
633 |
+
type: Retrieval
|
634 |
+
- dataset:
|
635 |
+
config: default
|
636 |
+
name: MTEB HotpotQA
|
637 |
+
revision: ab518f4d6fcca38d87c25209f94beba119d02014
|
638 |
+
split: test
|
639 |
+
type: mteb/hotpotqa
|
640 |
+
metrics:
|
641 |
+
- type: map_at_1
|
642 |
+
value: 44.651999999999994
|
643 |
+
- type: map_at_10
|
644 |
+
value: 79.95100000000001
|
645 |
+
- type: map_at_100
|
646 |
+
value: 80.51700000000001
|
647 |
+
- type: map_at_1000
|
648 |
+
value: 80.542
|
649 |
+
- type: map_at_3
|
650 |
+
value: 77.008
|
651 |
+
- type: map_at_5
|
652 |
+
value: 78.935
|
653 |
+
- type: mrr_at_1
|
654 |
+
value: 0.0
|
655 |
+
- type: mrr_at_10
|
656 |
+
value: 0.0
|
657 |
+
- type: mrr_at_100
|
658 |
+
value: 0.0
|
659 |
+
- type: mrr_at_1000
|
660 |
+
value: 0.0
|
661 |
+
- type: mrr_at_3
|
662 |
+
value: 0.0
|
663 |
+
- type: mrr_at_5
|
664 |
+
value: 0.0
|
665 |
+
- type: ndcg_at_1
|
666 |
+
value: 89.305
|
667 |
+
- type: ndcg_at_10
|
668 |
+
value: 85.479
|
669 |
+
- type: ndcg_at_100
|
670 |
+
value: 87.235
|
671 |
+
- type: ndcg_at_1000
|
672 |
+
value: 87.669
|
673 |
+
- type: ndcg_at_3
|
674 |
+
value: 81.648
|
675 |
+
- type: ndcg_at_5
|
676 |
+
value: 83.88600000000001
|
677 |
+
- type: precision_at_1
|
678 |
+
value: 89.305
|
679 |
+
- type: precision_at_10
|
680 |
+
value: 17.807000000000002
|
681 |
+
- type: precision_at_100
|
682 |
+
value: 1.9140000000000001
|
683 |
+
- type: precision_at_1000
|
684 |
+
value: 0.197
|
685 |
+
- type: precision_at_3
|
686 |
+
value: 53.756
|
687 |
+
- type: precision_at_5
|
688 |
+
value: 34.018
|
689 |
+
- type: recall_at_1
|
690 |
+
value: 44.651999999999994
|
691 |
+
- type: recall_at_10
|
692 |
+
value: 89.034
|
693 |
+
- type: recall_at_100
|
694 |
+
value: 95.719
|
695 |
+
- type: recall_at_1000
|
696 |
+
value: 98.535
|
697 |
+
- type: recall_at_3
|
698 |
+
value: 80.635
|
699 |
+
- type: recall_at_5
|
700 |
+
value: 85.044
|
701 |
+
- type: main_score
|
702 |
+
value: 85.479
|
703 |
+
task:
|
704 |
+
type: Retrieval
|
705 |
+
- dataset:
|
706 |
+
config: default
|
707 |
+
name: MTEB ImdbClassification
|
708 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
709 |
+
split: test
|
710 |
+
type: mteb/imdb
|
711 |
+
metrics:
|
712 |
+
- type: accuracy
|
713 |
+
value: 97.1376
|
714 |
+
- type: accuracy_stderr
|
715 |
+
value: 0.04571914259913447
|
716 |
+
- type: ap
|
717 |
+
value: 95.92783808558808
|
718 |
+
- type: ap_stderr
|
719 |
+
value: 0.05063782483358255
|
720 |
+
- type: f1
|
721 |
+
value: 97.13755519177172
|
722 |
+
- type: f1_stderr
|
723 |
+
value: 0.04575943074086138
|
724 |
+
- type: main_score
|
725 |
+
value: 97.1376
|
726 |
+
task:
|
727 |
+
type: Classification
|
728 |
+
- dataset:
|
729 |
+
config: default
|
730 |
+
name: MTEB MSMARCO
|
731 |
+
revision: c5a29a104738b98a9e76336939199e264163d4a0
|
732 |
+
split: dev
|
733 |
+
type: mteb/msmarco
|
734 |
+
metrics:
|
735 |
+
- type: map_at_1
|
736 |
+
value: 0.0
|
737 |
+
- type: map_at_10
|
738 |
+
value: 38.342
|
739 |
+
- type: map_at_100
|
740 |
+
value: 0.0
|
741 |
+
- type: map_at_1000
|
742 |
+
value: 0.0
|
743 |
+
- type: map_at_3
|
744 |
+
value: 0.0
|
745 |
+
- type: map_at_5
|
746 |
+
value: 0.0
|
747 |
+
- type: mrr_at_1
|
748 |
+
value: 0.0
|
749 |
+
- type: mrr_at_10
|
750 |
+
value: 0.0
|
751 |
+
- type: mrr_at_100
|
752 |
+
value: 0.0
|
753 |
+
- type: mrr_at_1000
|
754 |
+
value: 0.0
|
755 |
+
- type: mrr_at_3
|
756 |
+
value: 0.0
|
757 |
+
- type: mrr_at_5
|
758 |
+
value: 0.0
|
759 |
+
- type: ndcg_at_1
|
760 |
+
value: 0.0
|
761 |
+
- type: ndcg_at_10
|
762 |
+
value: 45.629999999999995
|
763 |
+
- type: ndcg_at_100
|
764 |
+
value: 0.0
|
765 |
+
- type: ndcg_at_1000
|
766 |
+
value: 0.0
|
767 |
+
- type: ndcg_at_3
|
768 |
+
value: 0.0
|
769 |
+
- type: ndcg_at_5
|
770 |
+
value: 0.0
|
771 |
+
- type: precision_at_1
|
772 |
+
value: 0.0
|
773 |
+
- type: precision_at_10
|
774 |
+
value: 7.119000000000001
|
775 |
+
- type: precision_at_100
|
776 |
+
value: 0.0
|
777 |
+
- type: precision_at_1000
|
778 |
+
value: 0.0
|
779 |
+
- type: precision_at_3
|
780 |
+
value: 0.0
|
781 |
+
- type: precision_at_5
|
782 |
+
value: 0.0
|
783 |
+
- type: recall_at_1
|
784 |
+
value: 0.0
|
785 |
+
- type: recall_at_10
|
786 |
+
value: 67.972
|
787 |
+
- type: recall_at_100
|
788 |
+
value: 0.0
|
789 |
+
- type: recall_at_1000
|
790 |
+
value: 0.0
|
791 |
+
- type: recall_at_3
|
792 |
+
value: 0.0
|
793 |
+
- type: recall_at_5
|
794 |
+
value: 0.0
|
795 |
+
- type: main_score
|
796 |
+
value: 45.629999999999995
|
797 |
+
task:
|
798 |
+
type: Retrieval
|
799 |
+
- dataset:
|
800 |
+
config: en
|
801 |
+
name: MTEB MTOPDomainClassification (en)
|
802 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
803 |
+
split: test
|
804 |
+
type: mteb/mtop_domain
|
805 |
+
metrics:
|
806 |
+
- type: accuracy
|
807 |
+
value: 99.24988600091199
|
808 |
+
- type: accuracy_stderr
|
809 |
+
value: 0.04496826931900734
|
810 |
+
- type: f1
|
811 |
+
value: 99.15933275095276
|
812 |
+
- type: f1_stderr
|
813 |
+
value: 0.05565039139747446
|
814 |
+
- type: main_score
|
815 |
+
value: 99.24988600091199
|
816 |
+
task:
|
817 |
+
type: Classification
|
818 |
+
- dataset:
|
819 |
+
config: en
|
820 |
+
name: MTEB MTOPIntentClassification (en)
|
821 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
822 |
+
split: test
|
823 |
+
type: mteb/mtop_intent
|
824 |
+
metrics:
|
825 |
+
- type: accuracy
|
826 |
+
value: 94.3684450524396
|
827 |
+
- type: accuracy_stderr
|
828 |
+
value: 0.8436548701322188
|
829 |
+
- type: f1
|
830 |
+
value: 77.33022623133307
|
831 |
+
- type: f1_stderr
|
832 |
+
value: 0.9228425861187275
|
833 |
+
- type: main_score
|
834 |
+
value: 94.3684450524396
|
835 |
+
task:
|
836 |
+
type: Classification
|
837 |
+
- dataset:
|
838 |
+
config: en
|
839 |
+
name: MTEB MassiveIntentClassification (en)
|
840 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
841 |
+
split: test
|
842 |
+
type: mteb/amazon_massive_intent
|
843 |
+
metrics:
|
844 |
+
- type: accuracy
|
845 |
+
value: 86.09616677874916
|
846 |
+
- type: accuracy_stderr
|
847 |
+
value: 0.9943208055590853
|
848 |
+
- type: f1
|
849 |
+
value: 83.4902056490062
|
850 |
+
- type: f1_stderr
|
851 |
+
value: 0.7626189310074184
|
852 |
+
- type: main_score
|
853 |
+
value: 86.09616677874916
|
854 |
+
task:
|
855 |
+
type: Classification
|
856 |
+
- dataset:
|
857 |
+
config: en
|
858 |
+
name: MTEB MassiveScenarioClassification (en)
|
859 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
860 |
+
split: test
|
861 |
+
type: mteb/amazon_massive_scenario
|
862 |
+
metrics:
|
863 |
+
- type: accuracy
|
864 |
+
value: 92.17215870880968
|
865 |
+
- type: accuracy_stderr
|
866 |
+
value: 0.25949941333658166
|
867 |
+
- type: f1
|
868 |
+
value: 91.36757392422702
|
869 |
+
- type: f1_stderr
|
870 |
+
value: 0.29139507298154815
|
871 |
+
- type: main_score
|
872 |
+
value: 92.17215870880968
|
873 |
+
task:
|
874 |
+
type: Classification
|
875 |
+
- dataset:
|
876 |
+
config: default
|
877 |
+
name: MTEB MedrxivClusteringP2P
|
878 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
879 |
+
split: test
|
880 |
+
type: mteb/medrxiv-clustering-p2p
|
881 |
+
metrics:
|
882 |
+
- type: main_score
|
883 |
+
value: 46.09497344077905
|
884 |
+
- type: v_measure
|
885 |
+
value: 46.09497344077905
|
886 |
+
- type: v_measure_std
|
887 |
+
value: 1.44871520869784
|
888 |
+
task:
|
889 |
+
type: Clustering
|
890 |
+
- dataset:
|
891 |
+
config: default
|
892 |
+
name: MTEB MedrxivClusteringS2S
|
893 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
894 |
+
split: test
|
895 |
+
type: mteb/medrxiv-clustering-s2s
|
896 |
+
metrics:
|
897 |
+
- type: main_score
|
898 |
+
value: 44.861049989560684
|
899 |
+
- type: v_measure
|
900 |
+
value: 44.861049989560684
|
901 |
+
- type: v_measure_std
|
902 |
+
value: 1.432199293162203
|
903 |
+
task:
|
904 |
+
type: Clustering
|
905 |
+
- dataset:
|
906 |
+
config: default
|
907 |
+
name: MTEB MindSmallReranking
|
908 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
909 |
+
split: test
|
910 |
+
type: mteb/mind_small
|
911 |
+
metrics:
|
912 |
+
- type: map
|
913 |
+
value: 31.75936162919999
|
914 |
+
- type: mrr
|
915 |
+
value: 32.966812736541236
|
916 |
+
- type: main_score
|
917 |
+
value: 31.75936162919999
|
918 |
+
task:
|
919 |
+
type: Reranking
|
920 |
+
- dataset:
|
921 |
+
config: default
|
922 |
+
name: MTEB NFCorpus
|
923 |
+
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
|
924 |
+
split: test
|
925 |
+
type: mteb/nfcorpus
|
926 |
+
metrics:
|
927 |
+
- type: map_at_1
|
928 |
+
value: 7.893999999999999
|
929 |
+
- type: map_at_10
|
930 |
+
value: 17.95
|
931 |
+
- type: map_at_100
|
932 |
+
value: 23.474
|
933 |
+
- type: map_at_1000
|
934 |
+
value: 25.412000000000003
|
935 |
+
- type: map_at_3
|
936 |
+
value: 12.884
|
937 |
+
- type: map_at_5
|
938 |
+
value: 15.171000000000001
|
939 |
+
- type: mrr_at_1
|
940 |
+
value: 0.0
|
941 |
+
- type: mrr_at_10
|
942 |
+
value: 0.0
|
943 |
+
- type: mrr_at_100
|
944 |
+
value: 0.0
|
945 |
+
- type: mrr_at_1000
|
946 |
+
value: 0.0
|
947 |
+
- type: mrr_at_3
|
948 |
+
value: 0.0
|
949 |
+
- type: mrr_at_5
|
950 |
+
value: 0.0
|
951 |
+
- type: ndcg_at_1
|
952 |
+
value: 55.728
|
953 |
+
- type: ndcg_at_10
|
954 |
+
value: 45.174
|
955 |
+
- type: ndcg_at_100
|
956 |
+
value: 42.18
|
957 |
+
- type: ndcg_at_1000
|
958 |
+
value: 50.793
|
959 |
+
- type: ndcg_at_3
|
960 |
+
value: 50.322
|
961 |
+
- type: ndcg_at_5
|
962 |
+
value: 48.244
|
963 |
+
- type: precision_at_1
|
964 |
+
value: 57.276
|
965 |
+
- type: precision_at_10
|
966 |
+
value: 33.437
|
967 |
+
- type: precision_at_100
|
968 |
+
value: 10.671999999999999
|
969 |
+
- type: precision_at_1000
|
970 |
+
value: 2.407
|
971 |
+
- type: precision_at_3
|
972 |
+
value: 46.646
|
973 |
+
- type: precision_at_5
|
974 |
+
value: 41.672
|
975 |
+
- type: recall_at_1
|
976 |
+
value: 7.893999999999999
|
977 |
+
- type: recall_at_10
|
978 |
+
value: 22.831000000000003
|
979 |
+
- type: recall_at_100
|
980 |
+
value: 43.818
|
981 |
+
- type: recall_at_1000
|
982 |
+
value: 75.009
|
983 |
+
- type: recall_at_3
|
984 |
+
value: 14.371
|
985 |
+
- type: recall_at_5
|
986 |
+
value: 17.752000000000002
|
987 |
+
- type: main_score
|
988 |
+
value: 45.174
|
989 |
+
task:
|
990 |
+
type: Retrieval
|
991 |
+
- dataset:
|
992 |
+
config: default
|
993 |
+
name: MTEB NQ
|
994 |
+
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
|
995 |
+
split: test
|
996 |
+
type: mteb/nq
|
997 |
+
metrics:
|
998 |
+
- type: map_at_1
|
999 |
+
value: 49.351
|
1000 |
+
- type: map_at_10
|
1001 |
+
value: 66.682
|
1002 |
+
- type: map_at_100
|
1003 |
+
value: 67.179
|
1004 |
+
- type: map_at_1000
|
1005 |
+
value: 67.18499999999999
|
1006 |
+
- type: map_at_3
|
1007 |
+
value: 62.958999999999996
|
1008 |
+
- type: map_at_5
|
1009 |
+
value: 65.364
|
1010 |
+
- type: mrr_at_1
|
1011 |
+
value: 0.0
|
1012 |
+
- type: mrr_at_10
|
1013 |
+
value: 0.0
|
1014 |
+
- type: mrr_at_100
|
1015 |
+
value: 0.0
|
1016 |
+
- type: mrr_at_1000
|
1017 |
+
value: 0.0
|
1018 |
+
- type: mrr_at_3
|
1019 |
+
value: 0.0
|
1020 |
+
- type: mrr_at_5
|
1021 |
+
value: 0.0
|
1022 |
+
- type: ndcg_at_1
|
1023 |
+
value: 55.417
|
1024 |
+
- type: ndcg_at_10
|
1025 |
+
value: 73.568
|
1026 |
+
- type: ndcg_at_100
|
1027 |
+
value: 75.35
|
1028 |
+
- type: ndcg_at_1000
|
1029 |
+
value: 75.478
|
1030 |
+
- type: ndcg_at_3
|
1031 |
+
value: 67.201
|
1032 |
+
- type: ndcg_at_5
|
1033 |
+
value: 70.896
|
1034 |
+
- type: precision_at_1
|
1035 |
+
value: 55.417
|
1036 |
+
- type: precision_at_10
|
1037 |
+
value: 11.036999999999999
|
1038 |
+
- type: precision_at_100
|
1039 |
+
value: 1.204
|
1040 |
+
- type: precision_at_1000
|
1041 |
+
value: 0.121
|
1042 |
+
- type: precision_at_3
|
1043 |
+
value: 29.654000000000003
|
1044 |
+
- type: precision_at_5
|
1045 |
+
value: 20.006
|
1046 |
+
- type: recall_at_1
|
1047 |
+
value: 49.351
|
1048 |
+
- type: recall_at_10
|
1049 |
+
value: 91.667
|
1050 |
+
- type: recall_at_100
|
1051 |
+
value: 98.89
|
1052 |
+
- type: recall_at_1000
|
1053 |
+
value: 99.812
|
1054 |
+
- type: recall_at_3
|
1055 |
+
value: 75.715
|
1056 |
+
- type: recall_at_5
|
1057 |
+
value: 84.072
|
1058 |
+
- type: main_score
|
1059 |
+
value: 73.568
|
1060 |
+
task:
|
1061 |
+
type: Retrieval
|
1062 |
+
- dataset:
|
1063 |
+
config: default
|
1064 |
+
name: MTEB QuoraRetrieval
|
1065 |
+
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
|
1066 |
+
split: test
|
1067 |
+
type: mteb/quora
|
1068 |
+
metrics:
|
1069 |
+
- type: map_at_1
|
1070 |
+
value: 71.358
|
1071 |
+
- type: map_at_10
|
1072 |
+
value: 85.474
|
1073 |
+
- type: map_at_100
|
1074 |
+
value: 86.101
|
1075 |
+
- type: map_at_1000
|
1076 |
+
value: 86.114
|
1077 |
+
- type: map_at_3
|
1078 |
+
value: 82.562
|
1079 |
+
- type: map_at_5
|
1080 |
+
value: 84.396
|
1081 |
+
- type: mrr_at_1
|
1082 |
+
value: 0.0
|
1083 |
+
- type: mrr_at_10
|
1084 |
+
value: 0.0
|
1085 |
+
- type: mrr_at_100
|
1086 |
+
value: 0.0
|
1087 |
+
- type: mrr_at_1000
|
1088 |
+
value: 0.0
|
1089 |
+
- type: mrr_at_3
|
1090 |
+
value: 0.0
|
1091 |
+
- type: mrr_at_5
|
1092 |
+
value: 0.0
|
1093 |
+
- type: ndcg_at_1
|
1094 |
+
value: 82.12
|
1095 |
+
- type: ndcg_at_10
|
1096 |
+
value: 89.035
|
1097 |
+
- type: ndcg_at_100
|
1098 |
+
value: 90.17399999999999
|
1099 |
+
- type: ndcg_at_1000
|
1100 |
+
value: 90.243
|
1101 |
+
- type: ndcg_at_3
|
1102 |
+
value: 86.32300000000001
|
1103 |
+
- type: ndcg_at_5
|
1104 |
+
value: 87.85
|
1105 |
+
- type: precision_at_1
|
1106 |
+
value: 82.12
|
1107 |
+
- type: precision_at_10
|
1108 |
+
value: 13.55
|
1109 |
+
- type: precision_at_100
|
1110 |
+
value: 1.54
|
1111 |
+
- type: precision_at_1000
|
1112 |
+
value: 0.157
|
1113 |
+
- type: precision_at_3
|
1114 |
+
value: 37.89
|
1115 |
+
- type: precision_at_5
|
1116 |
+
value: 24.9
|
1117 |
+
- type: recall_at_1
|
1118 |
+
value: 71.358
|
1119 |
+
- type: recall_at_10
|
1120 |
+
value: 95.855
|
1121 |
+
- type: recall_at_100
|
1122 |
+
value: 99.711
|
1123 |
+
- type: recall_at_1000
|
1124 |
+
value: 99.994
|
1125 |
+
- type: recall_at_3
|
1126 |
+
value: 88.02
|
1127 |
+
- type: recall_at_5
|
1128 |
+
value: 92.378
|
1129 |
+
- type: main_score
|
1130 |
+
value: 89.035
|
1131 |
+
task:
|
1132 |
+
type: Retrieval
|
1133 |
+
- dataset:
|
1134 |
+
config: default
|
1135 |
+
name: MTEB RedditClustering
|
1136 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1137 |
+
split: test
|
1138 |
+
type: mteb/reddit-clustering
|
1139 |
+
metrics:
|
1140 |
+
- type: main_score
|
1141 |
+
value: 71.0984522742521
|
1142 |
+
- type: v_measure
|
1143 |
+
value: 71.0984522742521
|
1144 |
+
- type: v_measure_std
|
1145 |
+
value: 3.5668139917058044
|
1146 |
+
task:
|
1147 |
+
type: Clustering
|
1148 |
+
- dataset:
|
1149 |
+
config: default
|
1150 |
+
name: MTEB RedditClusteringP2P
|
1151 |
+
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
|
1152 |
+
split: test
|
1153 |
+
type: mteb/reddit-clustering-p2p
|
1154 |
+
metrics:
|
1155 |
+
- type: main_score
|
1156 |
+
value: 74.94499641904133
|
1157 |
+
- type: v_measure
|
1158 |
+
value: 74.94499641904133
|
1159 |
+
- type: v_measure_std
|
1160 |
+
value: 11.419672879389248
|
1161 |
+
task:
|
1162 |
+
type: Clustering
|
1163 |
+
- dataset:
|
1164 |
+
config: default
|
1165 |
+
name: MTEB SCIDOCS
|
1166 |
+
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
|
1167 |
+
split: test
|
1168 |
+
type: mteb/scidocs
|
1169 |
+
metrics:
|
1170 |
+
- type: map_at_1
|
1171 |
+
value: 5.343
|
1172 |
+
- type: map_at_10
|
1173 |
+
value: 13.044
|
1174 |
+
- type: map_at_100
|
1175 |
+
value: 15.290999999999999
|
1176 |
+
- type: map_at_1000
|
1177 |
+
value: 15.609
|
1178 |
+
- type: map_at_3
|
1179 |
+
value: 9.227
|
1180 |
+
- type: map_at_5
|
1181 |
+
value: 11.158
|
1182 |
+
- type: mrr_at_1
|
1183 |
+
value: 0.0
|
1184 |
+
- type: mrr_at_10
|
1185 |
+
value: 0.0
|
1186 |
+
- type: mrr_at_100
|
1187 |
+
value: 0.0
|
1188 |
+
- type: mrr_at_1000
|
1189 |
+
value: 0.0
|
1190 |
+
- type: mrr_at_3
|
1191 |
+
value: 0.0
|
1192 |
+
- type: mrr_at_5
|
1193 |
+
value: 0.0
|
1194 |
+
- type: ndcg_at_1
|
1195 |
+
value: 26.3
|
1196 |
+
- type: ndcg_at_10
|
1197 |
+
value: 21.901
|
1198 |
+
- type: ndcg_at_100
|
1199 |
+
value: 30.316
|
1200 |
+
- type: ndcg_at_1000
|
1201 |
+
value: 35.547000000000004
|
1202 |
+
- type: ndcg_at_3
|
1203 |
+
value: 20.560000000000002
|
1204 |
+
- type: ndcg_at_5
|
1205 |
+
value: 18.187
|
1206 |
+
- type: precision_at_1
|
1207 |
+
value: 26.3
|
1208 |
+
- type: precision_at_10
|
1209 |
+
value: 11.34
|
1210 |
+
- type: precision_at_100
|
1211 |
+
value: 2.344
|
1212 |
+
- type: precision_at_1000
|
1213 |
+
value: 0.359
|
1214 |
+
- type: precision_at_3
|
1215 |
+
value: 18.967
|
1216 |
+
- type: precision_at_5
|
1217 |
+
value: 15.920000000000002
|
1218 |
+
- type: recall_at_1
|
1219 |
+
value: 5.343
|
1220 |
+
- type: recall_at_10
|
1221 |
+
value: 22.997
|
1222 |
+
- type: recall_at_100
|
1223 |
+
value: 47.562
|
1224 |
+
- type: recall_at_1000
|
1225 |
+
value: 72.94500000000001
|
1226 |
+
- type: recall_at_3
|
1227 |
+
value: 11.533
|
1228 |
+
- type: recall_at_5
|
1229 |
+
value: 16.148
|
1230 |
+
- type: main_score
|
1231 |
+
value: 21.901
|
1232 |
+
task:
|
1233 |
+
type: Retrieval
|
1234 |
+
- dataset:
|
1235 |
+
config: default
|
1236 |
+
name: MTEB SICK-R
|
1237 |
+
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
|
1238 |
+
split: test
|
1239 |
+
type: mteb/sickr-sts
|
1240 |
+
metrics:
|
1241 |
+
- type: cosine_pearson
|
1242 |
+
value: 87.3054603493591
|
1243 |
+
- type: cosine_spearman
|
1244 |
+
value: 82.14763206055602
|
1245 |
+
- type: manhattan_pearson
|
1246 |
+
value: 84.78737790237557
|
1247 |
+
- type: manhattan_spearman
|
1248 |
+
value: 81.88455356002758
|
1249 |
+
- type: euclidean_pearson
|
1250 |
+
value: 85.00668629311117
|
1251 |
+
- type: euclidean_spearman
|
1252 |
+
value: 82.14763037860851
|
1253 |
+
- type: main_score
|
1254 |
+
value: 82.14763206055602
|
1255 |
+
task:
|
1256 |
+
type: STS
|
1257 |
+
- dataset:
|
1258 |
+
config: default
|
1259 |
+
name: MTEB STS12
|
1260 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1261 |
+
split: test
|
1262 |
+
type: mteb/sts12-sts
|
1263 |
+
metrics:
|
1264 |
+
- type: cosine_pearson
|
1265 |
+
value: 86.6911864687294
|
1266 |
+
- type: cosine_spearman
|
1267 |
+
value: 77.89286260403269
|
1268 |
+
- type: manhattan_pearson
|
1269 |
+
value: 82.87240347680857
|
1270 |
+
- type: manhattan_spearman
|
1271 |
+
value: 78.10055393740326
|
1272 |
+
- type: euclidean_pearson
|
1273 |
+
value: 82.72282535777123
|
1274 |
+
- type: euclidean_spearman
|
1275 |
+
value: 77.89256648406325
|
1276 |
+
- type: main_score
|
1277 |
+
value: 77.89286260403269
|
1278 |
+
task:
|
1279 |
+
type: STS
|
1280 |
+
- dataset:
|
1281 |
+
config: default
|
1282 |
+
name: MTEB STS13
|
1283 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1284 |
+
split: test
|
1285 |
+
type: mteb/sts13-sts
|
1286 |
+
metrics:
|
1287 |
+
- type: cosine_pearson
|
1288 |
+
value: 87.7220832598633
|
1289 |
+
- type: cosine_spearman
|
1290 |
+
value: 88.30238972017452
|
1291 |
+
- type: manhattan_pearson
|
1292 |
+
value: 87.88214789140248
|
1293 |
+
- type: manhattan_spearman
|
1294 |
+
value: 88.24770220032391
|
1295 |
+
- type: euclidean_pearson
|
1296 |
+
value: 87.98610386257103
|
1297 |
+
- type: euclidean_spearman
|
1298 |
+
value: 88.30238972017452
|
1299 |
+
- type: main_score
|
1300 |
+
value: 88.30238972017452
|
1301 |
+
task:
|
1302 |
+
type: STS
|
1303 |
+
- dataset:
|
1304 |
+
config: default
|
1305 |
+
name: MTEB STS14
|
1306 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
1307 |
+
split: test
|
1308 |
+
type: mteb/sts14-sts
|
1309 |
+
metrics:
|
1310 |
+
- type: cosine_pearson
|
1311 |
+
value: 85.70614623247714
|
1312 |
+
- type: cosine_spearman
|
1313 |
+
value: 84.29920990970672
|
1314 |
+
- type: manhattan_pearson
|
1315 |
+
value: 84.9836190531721
|
1316 |
+
- type: manhattan_spearman
|
1317 |
+
value: 84.40933470597638
|
1318 |
+
- type: euclidean_pearson
|
1319 |
+
value: 84.96652336693347
|
1320 |
+
- type: euclidean_spearman
|
1321 |
+
value: 84.29920989531965
|
1322 |
+
- type: main_score
|
1323 |
+
value: 84.29920990970672
|
1324 |
+
task:
|
1325 |
+
type: STS
|
1326 |
+
- dataset:
|
1327 |
+
config: default
|
1328 |
+
name: MTEB STS15
|
1329 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
1330 |
+
split: test
|
1331 |
+
type: mteb/sts15-sts
|
1332 |
+
metrics:
|
1333 |
+
- type: cosine_pearson
|
1334 |
+
value: 88.4169972425264
|
1335 |
+
- type: cosine_spearman
|
1336 |
+
value: 89.03555007807218
|
1337 |
+
- type: manhattan_pearson
|
1338 |
+
value: 88.83068699455478
|
1339 |
+
- type: manhattan_spearman
|
1340 |
+
value: 89.21877175674125
|
1341 |
+
- type: euclidean_pearson
|
1342 |
+
value: 88.7251052947544
|
1343 |
+
- type: euclidean_spearman
|
1344 |
+
value: 89.03557389893083
|
1345 |
+
- type: main_score
|
1346 |
+
value: 89.03555007807218
|
1347 |
+
task:
|
1348 |
+
type: STS
|
1349 |
+
- dataset:
|
1350 |
+
config: default
|
1351 |
+
name: MTEB STS16
|
1352 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
1353 |
+
split: test
|
1354 |
+
type: mteb/sts16-sts
|
1355 |
+
metrics:
|
1356 |
+
- type: cosine_pearson
|
1357 |
+
value: 85.63830579034632
|
1358 |
+
- type: cosine_spearman
|
1359 |
+
value: 86.77353371581373
|
1360 |
+
- type: manhattan_pearson
|
1361 |
+
value: 86.24830492396637
|
1362 |
+
- type: manhattan_spearman
|
1363 |
+
value: 86.96754348626189
|
1364 |
+
- type: euclidean_pearson
|
1365 |
+
value: 86.09837038778359
|
1366 |
+
- type: euclidean_spearman
|
1367 |
+
value: 86.77353371581373
|
1368 |
+
- type: main_score
|
1369 |
+
value: 86.77353371581373
|
1370 |
+
task:
|
1371 |
+
type: STS
|
1372 |
+
- dataset:
|
1373 |
+
config: en-en
|
1374 |
+
name: MTEB STS17 (en-en)
|
1375 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
1376 |
+
split: test
|
1377 |
+
type: mteb/sts17-crosslingual-sts
|
1378 |
+
metrics:
|
1379 |
+
- type: cosine_pearson
|
1380 |
+
value: 91.2204675588959
|
1381 |
+
- type: cosine_spearman
|
1382 |
+
value: 90.66976712249057
|
1383 |
+
- type: manhattan_pearson
|
1384 |
+
value: 91.11007808242346
|
1385 |
+
- type: manhattan_spearman
|
1386 |
+
value: 90.51739232964488
|
1387 |
+
- type: euclidean_pearson
|
1388 |
+
value: 91.19588941007903
|
1389 |
+
- type: euclidean_spearman
|
1390 |
+
value: 90.66976712249057
|
1391 |
+
- type: main_score
|
1392 |
+
value: 90.66976712249057
|
1393 |
+
task:
|
1394 |
+
type: STS
|
1395 |
+
- dataset:
|
1396 |
+
config: en
|
1397 |
+
name: MTEB STS22 (en)
|
1398 |
+
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
1399 |
+
split: test
|
1400 |
+
type: mteb/sts22-crosslingual-sts
|
1401 |
+
metrics:
|
1402 |
+
- type: cosine_pearson
|
1403 |
+
value: 69.34416749707114
|
1404 |
+
- type: cosine_spearman
|
1405 |
+
value: 68.11632448161046
|
1406 |
+
- type: manhattan_pearson
|
1407 |
+
value: 68.99243488935281
|
1408 |
+
- type: manhattan_spearman
|
1409 |
+
value: 67.8398546438258
|
1410 |
+
- type: euclidean_pearson
|
1411 |
+
value: 69.06376010216088
|
1412 |
+
- type: euclidean_spearman
|
1413 |
+
value: 68.11632448161046
|
1414 |
+
- type: main_score
|
1415 |
+
value: 68.11632448161046
|
1416 |
+
task:
|
1417 |
+
type: STS
|
1418 |
+
- dataset:
|
1419 |
+
config: default
|
1420 |
+
name: MTEB STSBenchmark
|
1421 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
1422 |
+
split: test
|
1423 |
+
type: mteb/stsbenchmark-sts
|
1424 |
+
metrics:
|
1425 |
+
- type: cosine_pearson
|
1426 |
+
value: 88.10309739429758
|
1427 |
+
- type: cosine_spearman
|
1428 |
+
value: 88.40520383147418
|
1429 |
+
- type: manhattan_pearson
|
1430 |
+
value: 88.50753383813232
|
1431 |
+
- type: manhattan_spearman
|
1432 |
+
value: 88.66382629460927
|
1433 |
+
- type: euclidean_pearson
|
1434 |
+
value: 88.35050664609376
|
1435 |
+
- type: euclidean_spearman
|
1436 |
+
value: 88.40520383147418
|
1437 |
+
- type: main_score
|
1438 |
+
value: 88.40520383147418
|
1439 |
+
task:
|
1440 |
+
type: STS
|
1441 |
+
- dataset:
|
1442 |
+
config: default
|
1443 |
+
name: MTEB SciDocsRR
|
1444 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
1445 |
+
split: test
|
1446 |
+
type: mteb/scidocs-reranking
|
1447 |
+
metrics:
|
1448 |
+
- type: map
|
1449 |
+
value: 87.58627126942797
|
1450 |
+
- type: mrr
|
1451 |
+
value: 97.01098103058887
|
1452 |
+
- type: main_score
|
1453 |
+
value: 87.58627126942797
|
1454 |
+
task:
|
1455 |
+
type: Reranking
|
1456 |
+
- dataset:
|
1457 |
+
config: default
|
1458 |
+
name: MTEB SciFact
|
1459 |
+
revision: 0228b52cf27578f30900b9e5271d331663a030d7
|
1460 |
+
split: test
|
1461 |
+
type: mteb/scifact
|
1462 |
+
metrics:
|
1463 |
+
- type: map_at_1
|
1464 |
+
value: 62.883
|
1465 |
+
- type: map_at_10
|
1466 |
+
value: 75.371
|
1467 |
+
- type: map_at_100
|
1468 |
+
value: 75.66000000000001
|
1469 |
+
- type: map_at_1000
|
1470 |
+
value: 75.667
|
1471 |
+
- type: map_at_3
|
1472 |
+
value: 72.741
|
1473 |
+
- type: map_at_5
|
1474 |
+
value: 74.74
|
1475 |
+
- type: mrr_at_1
|
1476 |
+
value: 0.0
|
1477 |
+
- type: mrr_at_10
|
1478 |
+
value: 0.0
|
1479 |
+
- type: mrr_at_100
|
1480 |
+
value: 0.0
|
1481 |
+
- type: mrr_at_1000
|
1482 |
+
value: 0.0
|
1483 |
+
- type: mrr_at_3
|
1484 |
+
value: 0.0
|
1485 |
+
- type: mrr_at_5
|
1486 |
+
value: 0.0
|
1487 |
+
- type: ndcg_at_1
|
1488 |
+
value: 66.0
|
1489 |
+
- type: ndcg_at_10
|
1490 |
+
value: 80.12700000000001
|
1491 |
+
- type: ndcg_at_100
|
1492 |
+
value: 81.291
|
1493 |
+
- type: ndcg_at_1000
|
1494 |
+
value: 81.464
|
1495 |
+
- type: ndcg_at_3
|
1496 |
+
value: 76.19
|
1497 |
+
- type: ndcg_at_5
|
1498 |
+
value: 78.827
|
1499 |
+
- type: precision_at_1
|
1500 |
+
value: 66.0
|
1501 |
+
- type: precision_at_10
|
1502 |
+
value: 10.567
|
1503 |
+
- type: precision_at_100
|
1504 |
+
value: 1.117
|
1505 |
+
- type: precision_at_1000
|
1506 |
+
value: 0.11299999999999999
|
1507 |
+
- type: precision_at_3
|
1508 |
+
value: 30.333
|
1509 |
+
- type: precision_at_5
|
1510 |
+
value: 20.133000000000003
|
1511 |
+
- type: recall_at_1
|
1512 |
+
value: 62.883
|
1513 |
+
- type: recall_at_10
|
1514 |
+
value: 93.556
|
1515 |
+
- type: recall_at_100
|
1516 |
+
value: 98.667
|
1517 |
+
- type: recall_at_1000
|
1518 |
+
value: 100.0
|
1519 |
+
- type: recall_at_3
|
1520 |
+
value: 83.322
|
1521 |
+
- type: recall_at_5
|
1522 |
+
value: 89.756
|
1523 |
+
- type: main_score
|
1524 |
+
value: 80.12700000000001
|
1525 |
+
task:
|
1526 |
+
type: Retrieval
|
1527 |
+
- dataset:
|
1528 |
+
config: default
|
1529 |
+
name: MTEB SprintDuplicateQuestions
|
1530 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
1531 |
+
split: test
|
1532 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
1533 |
+
metrics:
|
1534 |
+
- type: cos_sim_accuracy
|
1535 |
+
value: 99.87524752475248
|
1536 |
+
- type: cos_sim_accuracy_threshold
|
1537 |
+
value: 74.86587762832642
|
1538 |
+
- type: cos_sim_ap
|
1539 |
+
value: 97.02222446606328
|
1540 |
+
- type: cos_sim_f1
|
1541 |
+
value: 93.66197183098592
|
1542 |
+
- type: cos_sim_f1_threshold
|
1543 |
+
value: 74.74223375320435
|
1544 |
+
- type: cos_sim_precision
|
1545 |
+
value: 94.23076923076923
|
1546 |
+
- type: cos_sim_recall
|
1547 |
+
value: 93.10000000000001
|
1548 |
+
- type: dot_accuracy
|
1549 |
+
value: 99.87524752475248
|
1550 |
+
- type: dot_accuracy_threshold
|
1551 |
+
value: 74.86587762832642
|
1552 |
+
- type: dot_ap
|
1553 |
+
value: 97.02222688043362
|
1554 |
+
- type: dot_f1
|
1555 |
+
value: 93.66197183098592
|
1556 |
+
- type: dot_f1_threshold
|
1557 |
+
value: 74.74223375320435
|
1558 |
+
- type: dot_precision
|
1559 |
+
value: 94.23076923076923
|
1560 |
+
- type: dot_recall
|
1561 |
+
value: 93.10000000000001
|
1562 |
+
- type: euclidean_accuracy
|
1563 |
+
value: 99.87524752475248
|
1564 |
+
- type: euclidean_accuracy_threshold
|
1565 |
+
value: 70.9000825881958
|
1566 |
+
- type: euclidean_ap
|
1567 |
+
value: 97.02222446606329
|
1568 |
+
- type: euclidean_f1
|
1569 |
+
value: 93.66197183098592
|
1570 |
+
- type: euclidean_f1_threshold
|
1571 |
+
value: 71.07426524162292
|
1572 |
+
- type: euclidean_precision
|
1573 |
+
value: 94.23076923076923
|
1574 |
+
- type: euclidean_recall
|
1575 |
+
value: 93.10000000000001
|
1576 |
+
- type: manhattan_accuracy
|
1577 |
+
value: 99.87623762376238
|
1578 |
+
- type: manhattan_accuracy_threshold
|
1579 |
+
value: 3588.5040283203125
|
1580 |
+
- type: manhattan_ap
|
1581 |
+
value: 97.09194643777883
|
1582 |
+
- type: manhattan_f1
|
1583 |
+
value: 93.7375745526839
|
1584 |
+
- type: manhattan_f1_threshold
|
1585 |
+
value: 3664.3760681152344
|
1586 |
+
- type: manhattan_precision
|
1587 |
+
value: 93.18181818181817
|
1588 |
+
- type: manhattan_recall
|
1589 |
+
value: 94.3
|
1590 |
+
- type: max_accuracy
|
1591 |
+
value: 99.87623762376238
|
1592 |
+
- type: max_ap
|
1593 |
+
value: 97.09194643777883
|
1594 |
+
- type: max_f1
|
1595 |
+
value: 93.7375745526839
|
1596 |
+
task:
|
1597 |
+
type: PairClassification
|
1598 |
+
- dataset:
|
1599 |
+
config: default
|
1600 |
+
name: MTEB StackExchangeClustering
|
1601 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
1602 |
+
split: test
|
1603 |
+
type: mteb/stackexchange-clustering
|
1604 |
+
metrics:
|
1605 |
+
- type: main_score
|
1606 |
+
value: 82.10134099988541
|
1607 |
+
- type: v_measure
|
1608 |
+
value: 82.10134099988541
|
1609 |
+
- type: v_measure_std
|
1610 |
+
value: 2.7926349897769533
|
1611 |
+
task:
|
1612 |
+
type: Clustering
|
1613 |
+
- dataset:
|
1614 |
+
config: default
|
1615 |
+
name: MTEB StackExchangeClusteringP2P
|
1616 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
1617 |
+
split: test
|
1618 |
+
type: mteb/stackexchange-clustering-p2p
|
1619 |
+
metrics:
|
1620 |
+
- type: main_score
|
1621 |
+
value: 48.357450742397404
|
1622 |
+
- type: v_measure
|
1623 |
+
value: 48.357450742397404
|
1624 |
+
- type: v_measure_std
|
1625 |
+
value: 1.520118876440547
|
1626 |
+
task:
|
1627 |
+
type: Clustering
|
1628 |
+
- dataset:
|
1629 |
+
config: default
|
1630 |
+
name: MTEB StackOverflowDupQuestions
|
1631 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
1632 |
+
split: test
|
1633 |
+
type: mteb/stackoverflowdupquestions-reranking
|
1634 |
+
metrics:
|
1635 |
+
- type: map
|
1636 |
+
value: 55.79277200802986
|
1637 |
+
- type: mrr
|
1638 |
+
value: 56.742517082590616
|
1639 |
+
- type: main_score
|
1640 |
+
value: 55.79277200802986
|
1641 |
+
task:
|
1642 |
+
type: Reranking
|
1643 |
+
- dataset:
|
1644 |
+
config: default
|
1645 |
+
name: MTEB SummEval
|
1646 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
1647 |
+
split: test
|
1648 |
+
type: mteb/summeval
|
1649 |
+
metrics:
|
1650 |
+
- type: cosine_spearman
|
1651 |
+
value: 30.701215774712693
|
1652 |
+
- type: cosine_pearson
|
1653 |
+
value: 31.26740037278488
|
1654 |
+
- type: dot_spearman
|
1655 |
+
value: 30.701215774712693
|
1656 |
+
- type: dot_pearson
|
1657 |
+
value: 31.267404144879997
|
1658 |
+
- type: main_score
|
1659 |
+
value: 30.701215774712693
|
1660 |
+
task:
|
1661 |
+
type: Summarization
|
1662 |
+
- dataset:
|
1663 |
+
config: default
|
1664 |
+
name: MTEB TRECCOVID
|
1665 |
+
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
|
1666 |
+
split: test
|
1667 |
+
type: mteb/trec-covid
|
1668 |
+
metrics:
|
1669 |
+
- type: map_at_1
|
1670 |
+
value: 0.23800000000000002
|
1671 |
+
- type: map_at_10
|
1672 |
+
value: 2.31
|
1673 |
+
- type: map_at_100
|
1674 |
+
value: 15.495000000000001
|
1675 |
+
- type: map_at_1000
|
1676 |
+
value: 38.829
|
1677 |
+
- type: map_at_3
|
1678 |
+
value: 0.72
|
1679 |
+
- type: map_at_5
|
1680 |
+
value: 1.185
|
1681 |
+
- type: mrr_at_1
|
1682 |
+
value: 0.0
|
1683 |
+
- type: mrr_at_10
|
1684 |
+
value: 0.0
|
1685 |
+
- type: mrr_at_100
|
1686 |
+
value: 0.0
|
1687 |
+
- type: mrr_at_1000
|
1688 |
+
value: 0.0
|
1689 |
+
- type: mrr_at_3
|
1690 |
+
value: 0.0
|
1691 |
+
- type: mrr_at_5
|
1692 |
+
value: 0.0
|
1693 |
+
- type: ndcg_at_1
|
1694 |
+
value: 91.0
|
1695 |
+
- type: ndcg_at_10
|
1696 |
+
value: 88.442
|
1697 |
+
- type: ndcg_at_100
|
1698 |
+
value: 71.39
|
1699 |
+
- type: ndcg_at_1000
|
1700 |
+
value: 64.153
|
1701 |
+
- type: ndcg_at_3
|
1702 |
+
value: 89.877
|
1703 |
+
- type: ndcg_at_5
|
1704 |
+
value: 89.562
|
1705 |
+
- type: precision_at_1
|
1706 |
+
value: 92.0
|
1707 |
+
- type: precision_at_10
|
1708 |
+
value: 92.60000000000001
|
1709 |
+
- type: precision_at_100
|
1710 |
+
value: 73.74000000000001
|
1711 |
+
- type: precision_at_1000
|
1712 |
+
value: 28.222
|
1713 |
+
- type: precision_at_3
|
1714 |
+
value: 94.0
|
1715 |
+
- type: precision_at_5
|
1716 |
+
value: 93.60000000000001
|
1717 |
+
- type: recall_at_1
|
1718 |
+
value: 0.23800000000000002
|
1719 |
+
- type: recall_at_10
|
1720 |
+
value: 2.428
|
1721 |
+
- type: recall_at_100
|
1722 |
+
value: 18.099999999999998
|
1723 |
+
- type: recall_at_1000
|
1724 |
+
value: 60.79599999999999
|
1725 |
+
- type: recall_at_3
|
1726 |
+
value: 0.749
|
1727 |
+
- type: recall_at_5
|
1728 |
+
value: 1.238
|
1729 |
+
- type: main_score
|
1730 |
+
value: 88.442
|
1731 |
+
task:
|
1732 |
+
type: Retrieval
|
1733 |
+
- dataset:
|
1734 |
+
config: default
|
1735 |
+
name: MTEB Touche2020
|
1736 |
+
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
|
1737 |
+
split: test
|
1738 |
+
type: mteb/touche2020
|
1739 |
+
metrics:
|
1740 |
+
- type: map_at_1
|
1741 |
+
value: 3.4939999999999998
|
1742 |
+
- type: map_at_10
|
1743 |
+
value: 12.531999999999998
|
1744 |
+
- type: map_at_100
|
1745 |
+
value: 19.147
|
1746 |
+
- type: map_at_1000
|
1747 |
+
value: 20.861
|
1748 |
+
- type: map_at_3
|
1749 |
+
value: 7.558
|
1750 |
+
- type: map_at_5
|
1751 |
+
value: 9.49
|
1752 |
+
- type: mrr_at_1
|
1753 |
+
value: 0.0
|
1754 |
+
- type: mrr_at_10
|
1755 |
+
value: 0.0
|
1756 |
+
- type: mrr_at_100
|
1757 |
+
value: 0.0
|
1758 |
+
- type: mrr_at_1000
|
1759 |
+
value: 0.0
|
1760 |
+
- type: mrr_at_3
|
1761 |
+
value: 0.0
|
1762 |
+
- type: mrr_at_5
|
1763 |
+
value: 0.0
|
1764 |
+
- type: ndcg_at_1
|
1765 |
+
value: 47.959
|
1766 |
+
- type: ndcg_at_10
|
1767 |
+
value: 31.781
|
1768 |
+
- type: ndcg_at_100
|
1769 |
+
value: 42.131
|
1770 |
+
- type: ndcg_at_1000
|
1771 |
+
value: 53.493
|
1772 |
+
- type: ndcg_at_3
|
1773 |
+
value: 39.204
|
1774 |
+
- type: ndcg_at_5
|
1775 |
+
value: 34.635
|
1776 |
+
- type: precision_at_1
|
1777 |
+
value: 48.980000000000004
|
1778 |
+
- type: precision_at_10
|
1779 |
+
value: 27.143
|
1780 |
+
- type: precision_at_100
|
1781 |
+
value: 8.224
|
1782 |
+
- type: precision_at_1000
|
1783 |
+
value: 1.584
|
1784 |
+
- type: precision_at_3
|
1785 |
+
value: 38.775999999999996
|
1786 |
+
- type: precision_at_5
|
1787 |
+
value: 33.061
|
1788 |
+
- type: recall_at_1
|
1789 |
+
value: 3.4939999999999998
|
1790 |
+
- type: recall_at_10
|
1791 |
+
value: 18.895
|
1792 |
+
- type: recall_at_100
|
1793 |
+
value: 50.192
|
1794 |
+
- type: recall_at_1000
|
1795 |
+
value: 85.167
|
1796 |
+
- type: recall_at_3
|
1797 |
+
value: 8.703
|
1798 |
+
- type: recall_at_5
|
1799 |
+
value: 11.824
|
1800 |
+
- type: main_score
|
1801 |
+
value: 31.781
|
1802 |
+
task:
|
1803 |
+
type: Retrieval
|
1804 |
+
- dataset:
|
1805 |
+
config: default
|
1806 |
+
name: MTEB ToxicConversationsClassification
|
1807 |
+
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
|
1808 |
+
split: test
|
1809 |
+
type: mteb/toxic_conversations_50k
|
1810 |
+
metrics:
|
1811 |
+
- type: accuracy
|
1812 |
+
value: 92.7402
|
1813 |
+
- type: accuracy_stderr
|
1814 |
+
value: 1.020764595781027
|
1815 |
+
- type: ap
|
1816 |
+
value: 44.38594756333084
|
1817 |
+
- type: ap_stderr
|
1818 |
+
value: 1.817150701258273
|
1819 |
+
- type: f1
|
1820 |
+
value: 79.95699280019547
|
1821 |
+
- type: f1_stderr
|
1822 |
+
value: 1.334582498702029
|
1823 |
+
- type: main_score
|
1824 |
+
value: 92.7402
|
1825 |
+
task:
|
1826 |
+
type: Classification
|
1827 |
+
- dataset:
|
1828 |
+
config: default
|
1829 |
+
name: MTEB TweetSentimentExtractionClassification
|
1830 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
1831 |
+
split: test
|
1832 |
+
type: mteb/tweet_sentiment_extraction
|
1833 |
+
metrics:
|
1834 |
+
- type: accuracy
|
1835 |
+
value: 80.86870401810978
|
1836 |
+
- type: accuracy_stderr
|
1837 |
+
value: 0.22688467782004712
|
1838 |
+
- type: f1
|
1839 |
+
value: 81.1829040745744
|
1840 |
+
- type: f1_stderr
|
1841 |
+
value: 0.19774920574849694
|
1842 |
+
- type: main_score
|
1843 |
+
value: 80.86870401810978
|
1844 |
+
task:
|
1845 |
+
type: Classification
|
1846 |
+
- dataset:
|
1847 |
+
config: default
|
1848 |
+
name: MTEB TwentyNewsgroupsClustering
|
1849 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
1850 |
+
split: test
|
1851 |
+
type: mteb/twentynewsgroups-clustering
|
1852 |
+
metrics:
|
1853 |
+
- type: main_score
|
1854 |
+
value: 64.82048869927482
|
1855 |
+
- type: v_measure
|
1856 |
+
value: 64.82048869927482
|
1857 |
+
- type: v_measure_std
|
1858 |
+
value: 0.9170394252450564
|
1859 |
+
task:
|
1860 |
+
type: Clustering
|
1861 |
+
- dataset:
|
1862 |
+
config: default
|
1863 |
+
name: MTEB TwitterSemEval2015
|
1864 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
1865 |
+
split: test
|
1866 |
+
type: mteb/twittersemeval2015-pairclassification
|
1867 |
+
metrics:
|
1868 |
+
- type: cos_sim_accuracy
|
1869 |
+
value: 88.44251057996067
|
1870 |
+
- type: cos_sim_accuracy_threshold
|
1871 |
+
value: 70.2150285243988
|
1872 |
+
- type: cos_sim_ap
|
1873 |
+
value: 81.11422351199913
|
1874 |
+
- type: cos_sim_f1
|
1875 |
+
value: 73.71062868615887
|
1876 |
+
- type: cos_sim_f1_threshold
|
1877 |
+
value: 66.507488489151
|
1878 |
+
- type: cos_sim_precision
|
1879 |
+
value: 70.2799712849964
|
1880 |
+
- type: cos_sim_recall
|
1881 |
+
value: 77.4934036939314
|
1882 |
+
- type: dot_accuracy
|
1883 |
+
value: 88.44251057996067
|
1884 |
+
- type: dot_accuracy_threshold
|
1885 |
+
value: 70.2150285243988
|
1886 |
+
- type: dot_ap
|
1887 |
+
value: 81.11420529068658
|
1888 |
+
- type: dot_f1
|
1889 |
+
value: 73.71062868615887
|
1890 |
+
- type: dot_f1_threshold
|
1891 |
+
value: 66.50749444961548
|
1892 |
+
- type: dot_precision
|
1893 |
+
value: 70.2799712849964
|
1894 |
+
- type: dot_recall
|
1895 |
+
value: 77.4934036939314
|
1896 |
+
- type: euclidean_accuracy
|
1897 |
+
value: 88.44251057996067
|
1898 |
+
- type: euclidean_accuracy_threshold
|
1899 |
+
value: 77.18156576156616
|
1900 |
+
- type: euclidean_ap
|
1901 |
+
value: 81.11422421732487
|
1902 |
+
- type: euclidean_f1
|
1903 |
+
value: 73.71062868615887
|
1904 |
+
- type: euclidean_f1_threshold
|
1905 |
+
value: 81.84436559677124
|
1906 |
+
- type: euclidean_precision
|
1907 |
+
value: 70.2799712849964
|
1908 |
+
- type: euclidean_recall
|
1909 |
+
value: 77.4934036939314
|
1910 |
+
- type: manhattan_accuracy
|
1911 |
+
value: 88.26369434344639
|
1912 |
+
- type: manhattan_accuracy_threshold
|
1913 |
+
value: 3837.067413330078
|
1914 |
+
- type: manhattan_ap
|
1915 |
+
value: 80.81442360477725
|
1916 |
+
- type: manhattan_f1
|
1917 |
+
value: 73.39883099117024
|
1918 |
+
- type: manhattan_f1_threshold
|
1919 |
+
value: 4098.833847045898
|
1920 |
+
- type: manhattan_precision
|
1921 |
+
value: 69.41896024464832
|
1922 |
+
- type: manhattan_recall
|
1923 |
+
value: 77.86279683377309
|
1924 |
+
- type: max_accuracy
|
1925 |
+
value: 88.44251057996067
|
1926 |
+
- type: max_ap
|
1927 |
+
value: 81.11422421732487
|
1928 |
+
- type: max_f1
|
1929 |
+
value: 73.71062868615887
|
1930 |
+
task:
|
1931 |
+
type: PairClassification
|
1932 |
+
- dataset:
|
1933 |
+
config: default
|
1934 |
+
name: MTEB TwitterURLCorpus
|
1935 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
1936 |
+
split: test
|
1937 |
+
type: mteb/twitterurlcorpus-pairclassification
|
1938 |
+
metrics:
|
1939 |
+
- type: cos_sim_accuracy
|
1940 |
+
value: 90.03182365040556
|
1941 |
+
- type: cos_sim_accuracy_threshold
|
1942 |
+
value: 64.46443796157837
|
1943 |
+
- type: cos_sim_ap
|
1944 |
+
value: 87.86649113691112
|
1945 |
+
- type: cos_sim_f1
|
1946 |
+
value: 80.45644844577821
|
1947 |
+
- type: cos_sim_f1_threshold
|
1948 |
+
value: 61.40774488449097
|
1949 |
+
- type: cos_sim_precision
|
1950 |
+
value: 77.54052702992216
|
1951 |
+
- type: cos_sim_recall
|
1952 |
+
value: 83.60024638127503
|
1953 |
+
- type: dot_accuracy
|
1954 |
+
value: 90.03182365040556
|
1955 |
+
- type: dot_accuracy_threshold
|
1956 |
+
value: 64.46444988250732
|
1957 |
+
- type: dot_ap
|
1958 |
+
value: 87.86649011954319
|
1959 |
+
- type: dot_f1
|
1960 |
+
value: 80.45644844577821
|
1961 |
+
- type: dot_f1_threshold
|
1962 |
+
value: 61.407750844955444
|
1963 |
+
- type: dot_precision
|
1964 |
+
value: 77.54052702992216
|
1965 |
+
- type: dot_recall
|
1966 |
+
value: 83.60024638127503
|
1967 |
+
- type: euclidean_accuracy
|
1968 |
+
value: 90.03182365040556
|
1969 |
+
- type: euclidean_accuracy_threshold
|
1970 |
+
value: 84.30368900299072
|
1971 |
+
- type: euclidean_ap
|
1972 |
+
value: 87.86649114275045
|
1973 |
+
- type: euclidean_f1
|
1974 |
+
value: 80.45644844577821
|
1975 |
+
- type: euclidean_f1_threshold
|
1976 |
+
value: 87.8547191619873
|
1977 |
+
- type: euclidean_precision
|
1978 |
+
value: 77.54052702992216
|
1979 |
+
- type: euclidean_recall
|
1980 |
+
value: 83.60024638127503
|
1981 |
+
- type: manhattan_accuracy
|
1982 |
+
value: 89.99883572010712
|
1983 |
+
- type: manhattan_accuracy_threshold
|
1984 |
+
value: 4206.838607788086
|
1985 |
+
- type: manhattan_ap
|
1986 |
+
value: 87.8600826607838
|
1987 |
+
- type: manhattan_f1
|
1988 |
+
value: 80.44054508120217
|
1989 |
+
- type: manhattan_f1_threshold
|
1990 |
+
value: 4372.755432128906
|
1991 |
+
- type: manhattan_precision
|
1992 |
+
value: 78.08219178082192
|
1993 |
+
- type: manhattan_recall
|
1994 |
+
value: 82.94579611949491
|
1995 |
+
- type: max_accuracy
|
1996 |
+
value: 90.03182365040556
|
1997 |
+
- type: max_ap
|
1998 |
+
value: 87.86649114275045
|
1999 |
+
- type: max_f1
|
2000 |
+
value: 80.45644844577821
|
2001 |
+
task:
|
2002 |
+
type: PairClassification
|
2003 |
+
language:
|
2004 |
+
- en
|
2005 |
+
license: cc-by-nc-4.0
|
2006 |
+
library_name: transformers
|
2007 |
+
---
|
2008 |
+
## Introduction
|
2009 |
+
We present NV-Embed-v2, a generalist embedding model that ranks No. 1 on the Massive Text Embedding Benchmark ([MTEB benchmark](https://huggingface.co/spaces/mteb/leaderboard))(as of Aug 30, 2024) with a score of 72.31 across 56 text embedding tasks. It also holds the No. 1 in the retrieval sub-category (a score of 62.65 across 15 tasks) in the leaderboard, which is essential to the development of RAG technology.
|
2010 |
+
|
2011 |
+
NV-Embed-v2 presents several new designs, including having the LLM attend to latent vectors for better pooled embedding output, and demonstrating a two-staged instruction tuning method to enhance the accuracy of both retrieval and non-retrieval tasks. Additionally, NV-Embed-v2 incorporates a novel hard-negative mining methods that take into account the positive relevance score for better false negatives removal.
|
2012 |
+
|
2013 |
+
For more technical details, refer to our paper: [NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models](https://arxiv.org/pdf/2405.17428).
|
2014 |
+
|
2015 |
+
## Model Details
|
2016 |
+
- Base Decoder-only LLM: [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
2017 |
+
- Pooling Type: Latent-Attention
|
2018 |
+
- Embedding Dimension: 4096
|
2019 |
+
|
2020 |
+
## How to use
|
2021 |
+
|
2022 |
+
Here is an example of how to encode queries and passages using Huggingface-transformer and Sentence-transformer. Please find the required package version [here](https://huggingface.co/nvidia/NV-Embed-v2#2-required-packages).
|
2023 |
+
|
2024 |
+
### Usage (HuggingFace Transformers)
|
2025 |
+
|
2026 |
+
```python
|
2027 |
+
import torch
|
2028 |
+
import torch.nn.functional as F
|
2029 |
+
from transformers import AutoTokenizer, AutoModel
|
2030 |
+
|
2031 |
+
# Each query needs to be accompanied by an corresponding instruction describing the task.
|
2032 |
+
task_name_to_instruct = {"example": "Given a question, retrieve passages that answer the question",}
|
2033 |
+
|
2034 |
+
query_prefix = "Instruct: "+task_name_to_instruct["example"]+"\nQuery: "
|
2035 |
+
queries = [
|
2036 |
+
'are judo throws allowed in wrestling?',
|
2037 |
+
'how to become a radiology technician in michigan?'
|
2038 |
+
]
|
2039 |
+
|
2040 |
+
# No instruction needed for retrieval passages
|
2041 |
+
passage_prefix = ""
|
2042 |
+
passages = [
|
2043 |
+
"Since you're reading this, you are probably someone from a judo background or someone who is just wondering how judo techniques can be applied under wrestling rules. So without further ado, let's get to the question. Are Judo throws allowed in wrestling? Yes, judo throws are allowed in freestyle and folkstyle wrestling. You only need to be careful to follow the slam rules when executing judo throws. In wrestling, a slam is lifting and returning an opponent to the mat with unnecessary force.",
|
2044 |
+
"Below are the basic steps to becoming a radiologic technologist in Michigan:Earn a high school diploma. As with most careers in health care, a high school education is the first step to finding entry-level employment. Taking classes in math and science, such as anatomy, biology, chemistry, physiology, and physics, can help prepare students for their college studies and future careers.Earn an associate degree. Entry-level radiologic positions typically require at least an Associate of Applied Science. Before enrolling in one of these degree programs, students should make sure it has been properly accredited by the Joint Review Committee on Education in Radiologic Technology (JRCERT).Get licensed or certified in the state of Michigan."
|
2045 |
+
]
|
2046 |
+
|
2047 |
+
# load model with tokenizer
|
2048 |
+
model = AutoModel.from_pretrained('nvidia/NV-Embed-v2', trust_remote_code=True)
|
2049 |
+
|
2050 |
+
# get the embeddings
|
2051 |
+
max_length = 32768
|
2052 |
+
query_embeddings = model.encode(queries, instruction=query_prefix, max_length=max_length)
|
2053 |
+
passage_embeddings = model.encode(passages, instruction=passage_prefix, max_length=max_length)
|
2054 |
+
|
2055 |
+
# normalize embeddings
|
2056 |
+
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
|
2057 |
+
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=1)
|
2058 |
+
|
2059 |
+
# get the embeddings with DataLoader (spliting the datasets into multiple mini-batches)
|
2060 |
+
# batch_size=2
|
2061 |
+
# query_embeddings = model._do_encode(queries, batch_size=batch_size, instruction=query_prefix, max_length=max_length, num_workers=32, return_numpy=True)
|
2062 |
+
# passage_embeddings = model._do_encode(passages, batch_size=batch_size, instruction=passage_prefix, max_length=max_length, num_workers=32, return_numpy=True)
|
2063 |
+
|
2064 |
+
scores = (query_embeddings @ passage_embeddings.T) * 100
|
2065 |
+
print(scores.tolist())
|
2066 |
+
# [[87.42693328857422, 0.46283677220344543], [0.965264618396759, 86.03721618652344]]
|
2067 |
+
```
|
2068 |
+
|
2069 |
+
|
2070 |
+
### Usage (Sentence-Transformers)
|
2071 |
+
|
2072 |
+
```python
|
2073 |
+
import torch
|
2074 |
+
from sentence_transformers import SentenceTransformer
|
2075 |
+
|
2076 |
+
# Each query needs to be accompanied by an corresponding instruction describing the task.
|
2077 |
+
task_name_to_instruct = {"example": "Given a question, retrieve passages that answer the question",}
|
2078 |
+
|
2079 |
+
query_prefix = "Instruct: "+task_name_to_instruct["example"]+"\nQuery: "
|
2080 |
+
queries = [
|
2081 |
+
'are judo throws allowed in wrestling?',
|
2082 |
+
'how to become a radiology technician in michigan?'
|
2083 |
+
]
|
2084 |
+
|
2085 |
+
# No instruction needed for retrieval passages
|
2086 |
+
passages = [
|
2087 |
+
"Since you're reading this, you are probably someone from a judo background or someone who is just wondering how judo techniques can be applied under wrestling rules. So without further ado, let's get to the question. Are Judo throws allowed in wrestling? Yes, judo throws are allowed in freestyle and folkstyle wrestling. You only need to be careful to follow the slam rules when executing judo throws. In wrestling, a slam is lifting and returning an opponent to the mat with unnecessary force.",
|
2088 |
+
"Below are the basic steps to becoming a radiologic technologist in Michigan:Earn a high school diploma. As with most careers in health care, a high school education is the first step to finding entry-level employment. Taking classes in math and science, such as anatomy, biology, chemistry, physiology, and physics, can help prepare students for their college studies and future careers.Earn an associate degree. Entry-level radiologic positions typically require at least an Associate of Applied Science. Before enrolling in one of these degree programs, students should make sure it has been properly accredited by the Joint Review Committee on Education in Radiologic Technology (JRCERT).Get licensed or certified in the state of Michigan."
|
2089 |
+
]
|
2090 |
+
|
2091 |
+
# load model with tokenizer
|
2092 |
+
model = SentenceTransformer('nvidia/NV-Embed-v2', trust_remote_code=True)
|
2093 |
+
model.max_seq_length = 32768
|
2094 |
+
model.tokenizer.padding_side="right"
|
2095 |
+
|
2096 |
+
def add_eos(input_examples):
|
2097 |
+
input_examples = [input_example + model.tokenizer.eos_token for input_example in input_examples]
|
2098 |
+
return input_examples
|
2099 |
+
|
2100 |
+
# get the embeddings
|
2101 |
+
batch_size = 2
|
2102 |
+
query_embeddings = model.encode(add_eos(queries), batch_size=batch_size, prompt=query_prefix, normalize_embeddings=True)
|
2103 |
+
passage_embeddings = model.encode(add_eos(passages), batch_size=batch_size, normalize_embeddings=True)
|
2104 |
+
|
2105 |
+
scores = (query_embeddings @ passage_embeddings.T) * 100
|
2106 |
+
print(scores.tolist())
|
2107 |
+
```
|
2108 |
+
|
2109 |
+
## License
|
2110 |
+
This model should not be used for any commercial purpose. Refer the [license](https://spdx.org/licenses/CC-BY-NC-4.0) for the detailed terms.
|
2111 |
+
|
2112 |
+
For commercial purpose, we recommend you to use the models of [NeMo Retriever Microservices (NIMs)](https://build.nvidia.com/explore/retrieval).
|
2113 |
+
|
2114 |
+
|
2115 |
+
## Correspondence to
|
2116 |
+
Chankyu Lee (chankyul@nvidia.com), Wei Ping (wping@nvidia.com)
|
2117 |
+
|
2118 |
+
|
2119 |
+
## Citation
|
2120 |
+
If you find this code useful in your research, please consider citing:
|
2121 |
+
|
2122 |
+
```bibtex
|
2123 |
+
@article{lee2024nv,
|
2124 |
+
title={NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models},
|
2125 |
+
author={Lee, Chankyu and Roy, Rajarshi and Xu, Mengyao and Raiman, Jonathan and Shoeybi, Mohammad and Catanzaro, Bryan and Ping, Wei},
|
2126 |
+
journal={arXiv preprint arXiv:2405.17428},
|
2127 |
+
year={2024}
|
2128 |
+
}
|
2129 |
+
```
|
2130 |
+
```bibtex
|
2131 |
+
@article{moreira2024nv,
|
2132 |
+
title={NV-Retriever: Improving text embedding models with effective hard-negative mining},
|
2133 |
+
author={Moreira, Gabriel de Souza P and Osmulski, Radek and Xu, Mengyao and Ak, Ronay and Schifferer, Benedikt and Oldridge, Even},
|
2134 |
+
journal={arXiv preprint arXiv:2407.15831},
|
2135 |
+
year={2024}
|
2136 |
+
}
|
2137 |
+
```
|
2138 |
+
|
2139 |
+
|
2140 |
+
## Troubleshooting
|
2141 |
+
|
2142 |
+
#### 1. Instruction template for MTEB benchmarks
|
2143 |
+
|
2144 |
+
For MTEB sub-tasks for retrieval, STS, summarization, please use the instruction prefix template in [instructions.json](https://huggingface.co/nvidia/NV-Embed-v2/blob/main/instructions.json). For classification, clustering and reranking, please use the instructions provided in Table. 7 in [NV-Embed paper](https://arxiv.org/pdf/2405.17428).
|
2145 |
+
|
2146 |
+
#### 2. Required Packages
|
2147 |
+
|
2148 |
+
If you have trouble, try installing the python packages as below
|
2149 |
+
```python
|
2150 |
+
pip uninstall -y transformer-engine
|
2151 |
+
pip install torch==2.2.0
|
2152 |
+
pip install transformers==4.42.4
|
2153 |
+
pip install flash-attn==2.2.0
|
2154 |
+
pip install sentence-transformers==2.7.0
|
2155 |
+
```
|
2156 |
+
|
2157 |
+
#### 3. How to enable Multi-GPU (Note, this is the case for HuggingFace Transformers)
|
2158 |
+
```python
|
2159 |
+
from transformers import AutoModel
|
2160 |
+
from torch.nn import DataParallel
|
2161 |
+
|
2162 |
+
embedding_model = AutoModel.from_pretrained("nvidia/NV-Embed-v2")
|
2163 |
+
for module_key, module in embedding_model._modules.items():
|
2164 |
+
embedding_model._modules[module_key] = DataParallel(module)
|
2165 |
+
```
|
2166 |
+
|
2167 |
+
#### 4. Fixing "nvidia/NV-Embed-v2 is not the path to a directory containing a file named config.json"
|
2168 |
+
|
2169 |
+
Switch to your local model path,and open config.json and change the value of **"_name_or_path"** and replace it with your local model path.
|
2170 |
+
|
2171 |
+
|
2172 |
+
#### 5. Access to model nvidia/NV-Embed-v2 is restricted. You must be authenticated to access it
|
2173 |
+
|
2174 |
+
Use your huggingface access [token](https://huggingface.co/settings/tokens) to execute *"huggingface-cli login"*.
|
2175 |
+
|
2176 |
+
#### 6. How to resolve slight mismatch in Sentence transformer results.
|
2177 |
+
|
2178 |
+
A slight mismatch in the Sentence Transformer implementation is caused by a discrepancy in the calculation of the instruction prefix length within the Sentence Transformer package.
|
2179 |
+
|
2180 |
+
To fix this issue, you need to build the Sentence Transformer package from source, making the necessary modification in this [line](https://github.com/UKPLab/sentence-transformers/blob/v2.7-release/sentence_transformers/SentenceTransformer.py#L353) as below.
|
2181 |
+
```python
|
2182 |
+
git clone https://github.com/UKPLab/sentence-transformers.git
|
2183 |
+
cd sentence-transformers
|
2184 |
+
git checkout v2.7-release
|
2185 |
+
# Modify L353 in SentenceTransformer.py to **'extra_features["prompt_length"] = tokenized_prompt["input_ids"].shape[-1]'**.
|
2186 |
+
pip install -e .
|
2187 |
+
```
|
config.json
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/NV-Embed-v2",
|
3 |
+
"add_eos": true,
|
4 |
+
"add_pad_token": true,
|
5 |
+
"architectures": [
|
6 |
+
"NVEmbedModel"
|
7 |
+
],
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_nvembed.NVEmbedConfig",
|
10 |
+
"AutoModel": "modeling_nvembed.NVEmbedModel"
|
11 |
+
},
|
12 |
+
"hidden_size": 4096,
|
13 |
+
"is_mask_instruction": true,
|
14 |
+
"latent_attention_config": {
|
15 |
+
"model_type": "latent_attention"
|
16 |
+
},
|
17 |
+
"mask_type": "b",
|
18 |
+
"model_type": "nvembed",
|
19 |
+
"padding_side": "right",
|
20 |
+
"text_config": {
|
21 |
+
"_name_or_path": "nvidia/NV-Embed-v2",
|
22 |
+
"add_cross_attention": false,
|
23 |
+
"architectures": [
|
24 |
+
"MistralModel"
|
25 |
+
],
|
26 |
+
"attention_dropout": 0.0,
|
27 |
+
"bad_words_ids": null,
|
28 |
+
"begin_suppress_tokens": null,
|
29 |
+
"bos_token_id": 1,
|
30 |
+
"chunk_size_feed_forward": 0,
|
31 |
+
"cross_attention_hidden_size": null,
|
32 |
+
"decoder_start_token_id": null,
|
33 |
+
"diversity_penalty": 0.0,
|
34 |
+
"do_sample": false,
|
35 |
+
"early_stopping": false,
|
36 |
+
"encoder_no_repeat_ngram_size": 0,
|
37 |
+
"eos_token_id": 2,
|
38 |
+
"exponential_decay_length_penalty": null,
|
39 |
+
"finetuning_task": null,
|
40 |
+
"forced_bos_token_id": null,
|
41 |
+
"forced_eos_token_id": null,
|
42 |
+
"hidden_act": "silu",
|
43 |
+
"hidden_size": 4096,
|
44 |
+
"id2label": {
|
45 |
+
"0": "LABEL_0",
|
46 |
+
"1": "LABEL_1"
|
47 |
+
},
|
48 |
+
"initializer_range": 0.02,
|
49 |
+
"intermediate_size": 14336,
|
50 |
+
"is_decoder": false,
|
51 |
+
"is_encoder_decoder": false,
|
52 |
+
"label2id": {
|
53 |
+
"LABEL_0": 0,
|
54 |
+
"LABEL_1": 1
|
55 |
+
},
|
56 |
+
"length_penalty": 1.0,
|
57 |
+
"max_length": 20,
|
58 |
+
"max_position_embeddings": 32768,
|
59 |
+
"min_length": 0,
|
60 |
+
"model_type": "bidir_mistral",
|
61 |
+
"no_repeat_ngram_size": 0,
|
62 |
+
"num_attention_heads": 32,
|
63 |
+
"num_beam_groups": 1,
|
64 |
+
"num_beams": 1,
|
65 |
+
"num_hidden_layers": 32,
|
66 |
+
"num_key_value_heads": 8,
|
67 |
+
"num_return_sequences": 1,
|
68 |
+
"output_attentions": false,
|
69 |
+
"output_hidden_states": false,
|
70 |
+
"output_scores": false,
|
71 |
+
"pad_token_id": null,
|
72 |
+
"prefix": null,
|
73 |
+
"problem_type": null,
|
74 |
+
"pruned_heads": {},
|
75 |
+
"remove_invalid_values": false,
|
76 |
+
"repetition_penalty": 1.0,
|
77 |
+
"return_dict": true,
|
78 |
+
"return_dict_in_generate": false,
|
79 |
+
"rms_norm_eps": 1e-05,
|
80 |
+
"rope_theta": 10000.0,
|
81 |
+
"sep_token_id": null,
|
82 |
+
"sliding_window": 4096,
|
83 |
+
"suppress_tokens": null,
|
84 |
+
"task_specific_params": null,
|
85 |
+
"temperature": 1.0,
|
86 |
+
"tf_legacy_loss": false,
|
87 |
+
"tie_encoder_decoder": false,
|
88 |
+
"tie_word_embeddings": false,
|
89 |
+
"tokenizer_class": null,
|
90 |
+
"top_k": 50,
|
91 |
+
"top_p": 1.0,
|
92 |
+
"torch_dtype": "float32",
|
93 |
+
"torchscript": false,
|
94 |
+
"typical_p": 1.0,
|
95 |
+
"use_bfloat16": false,
|
96 |
+
"use_cache": true,
|
97 |
+
"vocab_size": 32000
|
98 |
+
},
|
99 |
+
"torch_dtype": "float16",
|
100 |
+
"transformers_version": "4.42.4"
|
101 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.7.0",
|
4 |
+
"transformers": "4.37.2",
|
5 |
+
"pytorch": "2.2.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
configuration_nvembed.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from typing import Literal
|
3 |
+
from transformers import AutoConfig
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
from transformers.models.auto import CONFIG_MAPPING
|
6 |
+
from transformers.models.mistral import MistralConfig
|
7 |
+
|
8 |
+
NVEMBED_TYPE = "nvembed"
|
9 |
+
LATENT_ATTENTION_TYPE = "latent_attention"
|
10 |
+
BIDIR_MISTRAL_TYPE = "bidir_mistral"
|
11 |
+
|
12 |
+
class NVEmbedConfig(PretrainedConfig):
|
13 |
+
model_type = "nvembed"
|
14 |
+
is_composition = False
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
latent_attention_config=None,
|
19 |
+
text_config=None,
|
20 |
+
padding_side: Literal["right", "left"]="right",
|
21 |
+
add_pad_token: bool=True,
|
22 |
+
is_mask_instruction: bool = True,
|
23 |
+
add_eos: bool=True,
|
24 |
+
mask_type: str="b",
|
25 |
+
**kwargs,
|
26 |
+
):
|
27 |
+
if isinstance(latent_attention_config, dict):
|
28 |
+
latent_attention_config["model_type"] = (
|
29 |
+
latent_attention_config["model_type"] if "model_type" in latent_attention_config else LATENT_ATTENTION_TYPE
|
30 |
+
)
|
31 |
+
latent_attention_config = CONFIG_MAPPING[latent_attention_config["model_type"]](**latent_attention_config)
|
32 |
+
elif latent_attention_config is None:
|
33 |
+
latent_attention_config = CONFIG_MAPPING[LATENT_ATTENTION_TYPE]()
|
34 |
+
|
35 |
+
self.latent_attention_config = latent_attention_config
|
36 |
+
|
37 |
+
if isinstance(text_config, dict):
|
38 |
+
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
|
39 |
+
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
|
40 |
+
elif text_config is None:
|
41 |
+
text_config = None
|
42 |
+
|
43 |
+
self.text_config = text_config
|
44 |
+
self.padding_side = padding_side
|
45 |
+
self.is_mask_instruction = is_mask_instruction
|
46 |
+
self.add_pad_token = add_pad_token
|
47 |
+
self.add_eos = add_eos
|
48 |
+
self.mask_type = mask_type
|
49 |
+
if "hidden_size" in kwargs:
|
50 |
+
self.hidden_size = kwargs["hidden_size"]
|
51 |
+
else:
|
52 |
+
self.hidden_size = 4096
|
53 |
+
|
54 |
+
super().__init__(**kwargs)
|
55 |
+
|
56 |
+
|
57 |
+
class LatentAttentionConfig(PretrainedConfig):
|
58 |
+
model_type = LATENT_ATTENTION_TYPE
|
59 |
+
is_composition = False
|
60 |
+
_name_or_path = "latent_attention"
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
num_latents_value: int=512,
|
65 |
+
num_cross_heads: int=8,
|
66 |
+
output_normalize: bool=True,
|
67 |
+
hidden_dim: int=4096,
|
68 |
+
latent_dim: int=4096,
|
69 |
+
cross_dim_head: int=4096,
|
70 |
+
**kwargs,
|
71 |
+
):
|
72 |
+
self.num_latents_value = num_latents_value
|
73 |
+
self.num_cross_heads = num_cross_heads
|
74 |
+
self.output_normalize = output_normalize
|
75 |
+
self.hidden_dim = hidden_dim
|
76 |
+
self.latent_dim = latent_dim
|
77 |
+
self.cross_dim_head = cross_dim_head
|
78 |
+
|
79 |
+
|
80 |
+
class BidirectionalMistralConfig(MistralConfig):
|
81 |
+
model_type = BIDIR_MISTRAL_TYPE
|
82 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
83 |
+
|
84 |
+
AutoConfig.register(NVEMBED_TYPE, NVEmbedConfig)
|
85 |
+
AutoConfig.register(LATENT_ATTENTION_TYPE, LatentAttentionConfig)
|
86 |
+
AutoConfig.register(BIDIR_MISTRAL_TYPE, BidirectionalMistralConfig)
|
87 |
+
|
88 |
+
NVEmbedConfig.register_for_auto_class()
|
89 |
+
LatentAttentionConfig.register_for_auto_class()
|
90 |
+
BidirectionalMistralConfig.register_for_auto_class()
|
instructions.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ClimateFEVER":
|
3 |
+
{
|
4 |
+
"query": "Given a claim about climate change, retrieve documents that support or refute the claim",
|
5 |
+
"corpus": ""
|
6 |
+
},
|
7 |
+
"HotpotQA":
|
8 |
+
{
|
9 |
+
"query": "Given a multi-hop question, retrieve documents that can help answer the question",
|
10 |
+
"corpus": ""
|
11 |
+
},
|
12 |
+
"FEVER":
|
13 |
+
{
|
14 |
+
"query": "Given a claim, retrieve documents that support or refute the claim",
|
15 |
+
"corpus": ""
|
16 |
+
},
|
17 |
+
"MSMARCO":
|
18 |
+
{
|
19 |
+
"query": "Given a web search query, retrieve relevant passages that answer the query",
|
20 |
+
"corpus": ""
|
21 |
+
},
|
22 |
+
"DBPedia":
|
23 |
+
{
|
24 |
+
"query": "Given a query, retrieve relevant entity descriptions from DBPedia",
|
25 |
+
"corpus": ""
|
26 |
+
},
|
27 |
+
"NQ":
|
28 |
+
{
|
29 |
+
"query": "Given a question, retrieve passages that answer the question",
|
30 |
+
"corpus": ""
|
31 |
+
},
|
32 |
+
"QuoraRetrieval":
|
33 |
+
{
|
34 |
+
"query": "Given a question, retrieve questions that are semantically equivalent to the given question",
|
35 |
+
"corpus": "Given a question, retrieve questions that are semantically equivalent to the given question"
|
36 |
+
},
|
37 |
+
"SCIDOCS":
|
38 |
+
{
|
39 |
+
"query": "Given a scientific paper title, retrieve paper abstracts that are cited by the given paper",
|
40 |
+
"corpus": ""
|
41 |
+
},
|
42 |
+
"TRECCOVID":
|
43 |
+
{
|
44 |
+
"query": "Given a query on COVID-19, retrieve documents that answer the query",
|
45 |
+
"corpus": ""
|
46 |
+
},
|
47 |
+
"Touche2020":
|
48 |
+
{
|
49 |
+
"query": "Given a question, retrieve passages that answer the question",
|
50 |
+
"corpus": ""
|
51 |
+
},
|
52 |
+
"SciFact":
|
53 |
+
{
|
54 |
+
"query": "Given a scientific claim, retrieve documents that support or refute the claim",
|
55 |
+
"corpus": ""
|
56 |
+
},
|
57 |
+
"NFCorpus":
|
58 |
+
{
|
59 |
+
"query": "Given a question, retrieve relevant documents that answer the question",
|
60 |
+
"corpus": ""
|
61 |
+
},
|
62 |
+
"ArguAna":
|
63 |
+
{
|
64 |
+
"query": "Given a claim, retrieve documents that support or refute the claim",
|
65 |
+
"corpus": ""
|
66 |
+
},
|
67 |
+
"FiQA2018":
|
68 |
+
{
|
69 |
+
"query": "Given a financial question, retrieve relevant passages that answer the query",
|
70 |
+
"corpus": ""
|
71 |
+
},
|
72 |
+
"STS":
|
73 |
+
{
|
74 |
+
"text": "Retrieve semantically similar text"
|
75 |
+
},
|
76 |
+
"SUMM":
|
77 |
+
{
|
78 |
+
"text": "Given a news summary, retrieve other semantically similar summaries"
|
79 |
+
}
|
80 |
+
}
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44ff251c6b33ed89101915eb82a92575fd7d7daf9db953205f3bb4b982c4c3f5
|
3 |
+
size 788571960
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15702032384
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"embedding_model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
7 |
+
"embedding_model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"embedding_model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"embedding_model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"embedding_model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"embedding_model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"embedding_model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"embedding_model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"embedding_model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"embedding_model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"embedding_model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"embedding_model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"embedding_model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"embedding_model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"embedding_model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"embedding_model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"embedding_model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"embedding_model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"embedding_model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"embedding_model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
26 |
+
"embedding_model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
27 |
+
"embedding_model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
28 |
+
"embedding_model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
29 |
+
"embedding_model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
30 |
+
"embedding_model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"embedding_model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
32 |
+
"embedding_model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"embedding_model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"embedding_model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"embedding_model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"embedding_model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"embedding_model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"embedding_model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"embedding_model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"embedding_model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"embedding_model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"embedding_model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"embedding_model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"embedding_model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"embedding_model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"embedding_model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"embedding_model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"embedding_model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"embedding_model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"embedding_model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"embedding_model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"embedding_model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"embedding_model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"embedding_model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"embedding_model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"embedding_model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"embedding_model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"embedding_model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"embedding_model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"embedding_model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"embedding_model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"embedding_model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"embedding_model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"embedding_model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"embedding_model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"embedding_model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"embedding_model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"embedding_model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"embedding_model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"embedding_model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"embedding_model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"embedding_model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"embedding_model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"embedding_model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"embedding_model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"embedding_model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"embedding_model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"embedding_model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"embedding_model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"embedding_model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"embedding_model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"embedding_model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"embedding_model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"embedding_model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"embedding_model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"embedding_model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"embedding_model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"embedding_model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"embedding_model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"embedding_model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"embedding_model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"embedding_model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"embedding_model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"embedding_model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"embedding_model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"embedding_model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"embedding_model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
98 |
+
"embedding_model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
99 |
+
"embedding_model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"embedding_model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"embedding_model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
102 |
+
"embedding_model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"embedding_model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"embedding_model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"embedding_model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"embedding_model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
107 |
+
"embedding_model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
108 |
+
"embedding_model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
109 |
+
"embedding_model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
110 |
+
"embedding_model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
111 |
+
"embedding_model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
112 |
+
"embedding_model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
113 |
+
"embedding_model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
114 |
+
"embedding_model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
115 |
+
"embedding_model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
116 |
+
"embedding_model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
117 |
+
"embedding_model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
118 |
+
"embedding_model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
119 |
+
"embedding_model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
120 |
+
"embedding_model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
121 |
+
"embedding_model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
122 |
+
"embedding_model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
123 |
+
"embedding_model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
124 |
+
"embedding_model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
125 |
+
"embedding_model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
126 |
+
"embedding_model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
127 |
+
"embedding_model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
128 |
+
"embedding_model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"embedding_model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"embedding_model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
131 |
+
"embedding_model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
132 |
+
"embedding_model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"embedding_model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
134 |
+
"embedding_model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
135 |
+
"embedding_model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"embedding_model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
137 |
+
"embedding_model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
138 |
+
"embedding_model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
139 |
+
"embedding_model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"embedding_model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"embedding_model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"embedding_model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"embedding_model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"embedding_model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"embedding_model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
146 |
+
"embedding_model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"embedding_model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"embedding_model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
149 |
+
"embedding_model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"embedding_model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"embedding_model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"embedding_model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"embedding_model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
154 |
+
"embedding_model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
155 |
+
"embedding_model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
156 |
+
"embedding_model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
157 |
+
"embedding_model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
158 |
+
"embedding_model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
159 |
+
"embedding_model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
160 |
+
"embedding_model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
161 |
+
"embedding_model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
162 |
+
"embedding_model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
163 |
+
"embedding_model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
164 |
+
"embedding_model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"embedding_model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"embedding_model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"embedding_model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"embedding_model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"embedding_model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"embedding_model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"embedding_model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"embedding_model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"embedding_model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"embedding_model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"embedding_model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"embedding_model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"embedding_model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"embedding_model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"embedding_model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"embedding_model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"embedding_model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"embedding_model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"embedding_model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"embedding_model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"embedding_model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"embedding_model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"embedding_model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"embedding_model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"embedding_model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"embedding_model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"embedding_model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"embedding_model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"embedding_model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"embedding_model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"embedding_model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"embedding_model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"embedding_model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"embedding_model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"embedding_model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"embedding_model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"embedding_model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"embedding_model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"embedding_model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"embedding_model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"embedding_model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"embedding_model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"embedding_model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"embedding_model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"embedding_model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"embedding_model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"embedding_model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"embedding_model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"embedding_model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"embedding_model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
215 |
+
"embedding_model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
216 |
+
"embedding_model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
217 |
+
"embedding_model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
218 |
+
"embedding_model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
219 |
+
"embedding_model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
220 |
+
"embedding_model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
221 |
+
"embedding_model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
222 |
+
"embedding_model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
223 |
+
"embedding_model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
224 |
+
"embedding_model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
225 |
+
"embedding_model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
226 |
+
"embedding_model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
227 |
+
"embedding_model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
228 |
+
"embedding_model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"embedding_model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"embedding_model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"embedding_model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"embedding_model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
233 |
+
"embedding_model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
234 |
+
"embedding_model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
235 |
+
"embedding_model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
236 |
+
"embedding_model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
237 |
+
"embedding_model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
238 |
+
"embedding_model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
239 |
+
"embedding_model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
240 |
+
"embedding_model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
241 |
+
"embedding_model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
242 |
+
"embedding_model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
243 |
+
"embedding_model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
244 |
+
"embedding_model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
245 |
+
"embedding_model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
246 |
+
"embedding_model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
247 |
+
"embedding_model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
248 |
+
"embedding_model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
249 |
+
"embedding_model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
250 |
+
"embedding_model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
251 |
+
"embedding_model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
252 |
+
"embedding_model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
253 |
+
"embedding_model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
254 |
+
"embedding_model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
255 |
+
"embedding_model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
256 |
+
"embedding_model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
257 |
+
"embedding_model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
258 |
+
"embedding_model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
259 |
+
"embedding_model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
260 |
+
"embedding_model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"embedding_model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"embedding_model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"embedding_model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"embedding_model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"embedding_model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
266 |
+
"embedding_model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"embedding_model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"embedding_model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
269 |
+
"embedding_model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
270 |
+
"embedding_model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
271 |
+
"embedding_model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
272 |
+
"embedding_model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
273 |
+
"embedding_model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"embedding_model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"embedding_model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"embedding_model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"embedding_model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
278 |
+
"embedding_model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
279 |
+
"embedding_model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
280 |
+
"embedding_model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
281 |
+
"embedding_model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
282 |
+
"embedding_model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
283 |
+
"embedding_model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
284 |
+
"embedding_model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
285 |
+
"embedding_model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
286 |
+
"embedding_model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
287 |
+
"embedding_model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
288 |
+
"embedding_model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
289 |
+
"embedding_model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
290 |
+
"embedding_model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
291 |
+
"embedding_model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
292 |
+
"embedding_model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
293 |
+
"embedding_model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
294 |
+
"embedding_model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
295 |
+
"embedding_model.norm.weight": "model-00004-of-00004.safetensors",
|
296 |
+
"latent_attention_model.cross_attend_blocks.0.fn.to_kv.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"latent_attention_model.cross_attend_blocks.0.fn.to_out.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"latent_attention_model.cross_attend_blocks.0.fn.to_q.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"latent_attention_model.cross_attend_blocks.0.norm.bias": "model-00001-of-00004.safetensors",
|
300 |
+
"latent_attention_model.cross_attend_blocks.0.norm.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"latent_attention_model.cross_attend_blocks.0.norm_context.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"latent_attention_model.cross_attend_blocks.0.norm_context.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"latent_attention_model.cross_attend_blocks.1.fn.net.0.bias": "model-00001-of-00004.safetensors",
|
304 |
+
"latent_attention_model.cross_attend_blocks.1.fn.net.0.weight": "model-00001-of-00004.safetensors",
|
305 |
+
"latent_attention_model.cross_attend_blocks.1.fn.net.2.bias": "model-00001-of-00004.safetensors",
|
306 |
+
"latent_attention_model.cross_attend_blocks.1.fn.net.2.weight": "model-00001-of-00004.safetensors",
|
307 |
+
"latent_attention_model.cross_attend_blocks.1.norm.bias": "model-00001-of-00004.safetensors",
|
308 |
+
"latent_attention_model.cross_attend_blocks.1.norm.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"latent_attention_model.latents": "model-00001-of-00004.safetensors"
|
310 |
+
}
|
311 |
+
}
|
modeling_nvembed.py
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Union, Dict, Mapping, Optional, Tuple, TypedDict
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import numpy as np
|
6 |
+
from functools import partial
|
7 |
+
from contextlib import nullcontext
|
8 |
+
from transformers import AutoModel, PreTrainedTokenizerFast, BatchEncoding, DataCollatorWithPadding
|
9 |
+
from transformers.modeling_utils import PreTrainedModel
|
10 |
+
from transformers.models.auto import AutoTokenizer
|
11 |
+
from transformers.models.mistral.modeling_mistral import MISTRAL_INPUTS_DOCSTRING
|
12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
13 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
|
14 |
+
from transformers import MistralModel, MistralConfig
|
15 |
+
from transformers.cache_utils import Cache, DynamicCache
|
16 |
+
from transformers.utils import (
|
17 |
+
add_start_docstrings_to_model_forward,
|
18 |
+
logging,
|
19 |
+
)
|
20 |
+
from einops import rearrange, repeat
|
21 |
+
from tqdm.auto import tqdm
|
22 |
+
from datasets import Dataset
|
23 |
+
from torch.utils.data import DataLoader
|
24 |
+
from .configuration_nvembed import NVEmbedConfig, LatentAttentionConfig, BidirectionalMistralConfig
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
class NVEmbedFeatures(TypedDict):
|
29 |
+
input_dict: torch.Tensor
|
30 |
+
attention_mask: torch.Tensor
|
31 |
+
pool_mask: torch.Tensor
|
32 |
+
|
33 |
+
class BidirectionalMistralModel(MistralModel):
|
34 |
+
config_class = BidirectionalMistralConfig
|
35 |
+
|
36 |
+
def __init__(self, config: MistralConfig):
|
37 |
+
super().__init__(config)
|
38 |
+
for layer in self.layers:
|
39 |
+
layer.self_attn.is_causal = False
|
40 |
+
self._attn_implementation = "eager"
|
41 |
+
|
42 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
43 |
+
def forward(
|
44 |
+
self,
|
45 |
+
input_ids: torch.LongTensor = None,
|
46 |
+
attention_mask: Optional[torch.Tensor] = None,
|
47 |
+
position_ids: Optional[torch.LongTensor] = None,
|
48 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
49 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
50 |
+
use_cache: Optional[bool] = None,
|
51 |
+
output_attentions: Optional[bool] = None,
|
52 |
+
output_hidden_states: Optional[bool] = None,
|
53 |
+
return_dict: Optional[bool] = None,
|
54 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
55 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
56 |
+
output_hidden_states = (
|
57 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
58 |
+
)
|
59 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
60 |
+
|
61 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
62 |
+
|
63 |
+
# retrieve input_ids and inputs_embeds
|
64 |
+
if input_ids is not None and inputs_embeds is not None:
|
65 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
66 |
+
elif input_ids is not None:
|
67 |
+
batch_size, seq_length = input_ids.shape
|
68 |
+
elif inputs_embeds is not None:
|
69 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
70 |
+
else:
|
71 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
72 |
+
|
73 |
+
if self.gradient_checkpointing and self.training:
|
74 |
+
if use_cache:
|
75 |
+
logger.warning_once(
|
76 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
77 |
+
)
|
78 |
+
use_cache = False
|
79 |
+
|
80 |
+
past_key_values_length = 0
|
81 |
+
|
82 |
+
if use_cache:
|
83 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
84 |
+
if use_legacy_cache:
|
85 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
86 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
87 |
+
|
88 |
+
if position_ids is None:
|
89 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
90 |
+
position_ids = torch.arange(
|
91 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
92 |
+
)
|
93 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
94 |
+
else:
|
95 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
96 |
+
|
97 |
+
if inputs_embeds is None:
|
98 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
99 |
+
|
100 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
101 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
102 |
+
if is_padding_right:
|
103 |
+
raise ValueError(
|
104 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
105 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
106 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
107 |
+
)
|
108 |
+
|
109 |
+
if self._attn_implementation == "flash_attention_2":
|
110 |
+
# 2d mask is passed through the layers
|
111 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
112 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
113 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
114 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
115 |
+
attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
116 |
+
attention_mask, inputs_embeds.dtype
|
117 |
+
)
|
118 |
+
else:
|
119 |
+
# 4d mask is passed through the layers
|
120 |
+
attention_mask = _prepare_4d_attention_mask(
|
121 |
+
attention_mask, inputs_embeds.dtype,
|
122 |
+
)
|
123 |
+
|
124 |
+
hidden_states = inputs_embeds
|
125 |
+
|
126 |
+
# decoder layers
|
127 |
+
all_hidden_states = () if output_hidden_states else None
|
128 |
+
all_self_attns = () if output_attentions else None
|
129 |
+
next_decoder_cache = None
|
130 |
+
|
131 |
+
for decoder_layer in self.layers:
|
132 |
+
if output_hidden_states:
|
133 |
+
all_hidden_states += (hidden_states,)
|
134 |
+
|
135 |
+
if self.gradient_checkpointing and self.training:
|
136 |
+
layer_outputs = self._gradient_checkpointing_func(
|
137 |
+
decoder_layer.__call__,
|
138 |
+
hidden_states,
|
139 |
+
attention_mask,
|
140 |
+
position_ids,
|
141 |
+
past_key_values,
|
142 |
+
output_attentions,
|
143 |
+
use_cache,
|
144 |
+
)
|
145 |
+
else:
|
146 |
+
layer_outputs = decoder_layer(
|
147 |
+
hidden_states,
|
148 |
+
attention_mask=attention_mask,
|
149 |
+
position_ids=position_ids,
|
150 |
+
past_key_value=past_key_values,
|
151 |
+
output_attentions=output_attentions,
|
152 |
+
use_cache=use_cache,
|
153 |
+
)
|
154 |
+
|
155 |
+
hidden_states = layer_outputs[0]
|
156 |
+
|
157 |
+
if use_cache:
|
158 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
159 |
+
|
160 |
+
if output_attentions:
|
161 |
+
all_self_attns += (layer_outputs[1],)
|
162 |
+
|
163 |
+
hidden_states = self.norm(hidden_states)
|
164 |
+
|
165 |
+
# add hidden states from the last decoder layer
|
166 |
+
if output_hidden_states:
|
167 |
+
all_hidden_states += (hidden_states,)
|
168 |
+
|
169 |
+
next_cache = None
|
170 |
+
if use_cache:
|
171 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
172 |
+
|
173 |
+
if not return_dict:
|
174 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
175 |
+
return BaseModelOutputWithPast(
|
176 |
+
last_hidden_state=hidden_states,
|
177 |
+
past_key_values=next_cache,
|
178 |
+
hidden_states=all_hidden_states,
|
179 |
+
attentions=all_self_attns,
|
180 |
+
)
|
181 |
+
|
182 |
+
def _move_to_device(maybe_tensor, device: torch.device):
|
183 |
+
if torch.is_tensor(maybe_tensor):
|
184 |
+
return maybe_tensor.to(device, non_blocking=device.type == "cuda")
|
185 |
+
elif isinstance(maybe_tensor, dict):
|
186 |
+
return {key: _move_to_device(value, device) for key, value in maybe_tensor.items()}
|
187 |
+
elif isinstance(maybe_tensor, list):
|
188 |
+
return [_move_to_device(x, device) for x in maybe_tensor]
|
189 |
+
elif isinstance(maybe_tensor, tuple):
|
190 |
+
return tuple([_move_to_device(x, device) for x in maybe_tensor])
|
191 |
+
elif isinstance(maybe_tensor, Mapping):
|
192 |
+
return type(maybe_tensor)({k: _move_to_device(v, device) for k, v in maybe_tensor.items()})
|
193 |
+
else:
|
194 |
+
return maybe_tensor
|
195 |
+
|
196 |
+
def move_to_device(sample, device: torch.device):
|
197 |
+
if device.type == "cpu":
|
198 |
+
return sample
|
199 |
+
|
200 |
+
if len(sample) == 0:
|
201 |
+
return {}
|
202 |
+
return _move_to_device(sample, device)
|
203 |
+
|
204 |
+
|
205 |
+
def input_transform_func(
|
206 |
+
tokenizer: PreTrainedTokenizerFast,
|
207 |
+
examples: Dict[str, List],
|
208 |
+
always_add_eos: bool,
|
209 |
+
max_length: int,
|
210 |
+
instruction: str,
|
211 |
+
) -> BatchEncoding:
|
212 |
+
if always_add_eos:
|
213 |
+
examples['input_texts'] = [instruction + input_example + tokenizer.eos_token for input_example in examples['input_texts']]
|
214 |
+
batch_dict = tokenizer(
|
215 |
+
examples['input_texts'],
|
216 |
+
max_length=max_length,
|
217 |
+
padding=True,
|
218 |
+
return_token_type_ids=False,
|
219 |
+
return_tensors="pt",
|
220 |
+
truncation=True)
|
221 |
+
return batch_dict
|
222 |
+
|
223 |
+
|
224 |
+
class PreNorm(torch.nn.Module):
|
225 |
+
def __init__(self, dim, fn, context_dim = None):
|
226 |
+
super().__init__()
|
227 |
+
self.fn = fn
|
228 |
+
self.norm = torch.nn.LayerNorm(dim)
|
229 |
+
self.norm_context = torch.nn.LayerNorm(context_dim) if exists(context_dim) else None
|
230 |
+
|
231 |
+
def forward(self, x, **kwargs):
|
232 |
+
x = self.norm(x)
|
233 |
+
if exists(self.norm_context):
|
234 |
+
context = kwargs['context']
|
235 |
+
normed_context = self.norm_context(context)
|
236 |
+
kwargs.update(context = normed_context)
|
237 |
+
return self.fn(x, **kwargs)
|
238 |
+
|
239 |
+
class GEGLU(torch.nn.Module):
|
240 |
+
def forward(self, x):
|
241 |
+
x, gates = x.chunk(2, dim = -1)
|
242 |
+
return x * torch.nn.functional.gelu(gates)
|
243 |
+
|
244 |
+
class FeedForward(torch.nn.Module):
|
245 |
+
def __init__(self, dim, mult = 4):
|
246 |
+
super().__init__()
|
247 |
+
self.net = torch.nn.Sequential(torch.nn.Linear(dim, dim * mult * 2),
|
248 |
+
GEGLU(),
|
249 |
+
torch.nn.Linear(dim * mult, dim))
|
250 |
+
|
251 |
+
def forward(self, x):
|
252 |
+
return self.net(x)
|
253 |
+
|
254 |
+
def exists(val):
|
255 |
+
return val is not None
|
256 |
+
|
257 |
+
def default(val, d):
|
258 |
+
return val if exists(val) else d
|
259 |
+
|
260 |
+
|
261 |
+
class Attention(torch.nn.Module):
|
262 |
+
def __init__(self, query_dim, context_dim = None, heads = 8, dim_head = 64):
|
263 |
+
super().__init__()
|
264 |
+
inner_dim = dim_head * heads
|
265 |
+
context_dim = default(context_dim, query_dim)
|
266 |
+
self.scale = dim_head ** -0.5
|
267 |
+
self.heads = heads
|
268 |
+
|
269 |
+
self.to_q = torch.nn.Linear(query_dim, inner_dim, bias = False)
|
270 |
+
self.to_kv = torch.nn.Linear(context_dim, inner_dim * 2, bias = False)
|
271 |
+
self.to_out = torch.nn.Linear(inner_dim, query_dim, bias = False)
|
272 |
+
|
273 |
+
def forward(self, x, context = None, mask = None):
|
274 |
+
h = self.heads
|
275 |
+
q = self.to_q(x)
|
276 |
+
context = default(context, x)
|
277 |
+
k, v = self.to_kv(context).chunk(2, dim = -1)
|
278 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))
|
279 |
+
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_mem_efficient=True):
|
280 |
+
out = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
281 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h = h)
|
282 |
+
return self.to_out(out)
|
283 |
+
|
284 |
+
|
285 |
+
class LatentAttentionModel(PreTrainedModel):
|
286 |
+
config_class = LatentAttentionConfig
|
287 |
+
|
288 |
+
def __init__(self, config: LatentAttentionConfig):
|
289 |
+
super().__init__(config)
|
290 |
+
## cross-attention block
|
291 |
+
num_latents, latent_dim, cross_heads, cross_dim_head = config.num_latents_value, config.latent_dim, config.num_cross_heads, config.cross_dim_head
|
292 |
+
dim = config.hidden_dim
|
293 |
+
# init latent_attention and latents
|
294 |
+
self.cross_attend_blocks = torch.nn.ModuleList([
|
295 |
+
PreNorm(latent_dim, Attention(latent_dim, dim, heads = cross_heads, dim_head = cross_dim_head),
|
296 |
+
context_dim = dim),
|
297 |
+
PreNorm(latent_dim, FeedForward(latent_dim)),
|
298 |
+
])
|
299 |
+
self.output_normalize = config.output_normalize
|
300 |
+
self.register_parameter("latents", torch.nn.Parameter(torch.randn(num_latents, latent_dim)))
|
301 |
+
|
302 |
+
def forward(self, hiddens, attention_mask: torch.Tensor=None):
|
303 |
+
## cross-attention block
|
304 |
+
cross_attn, cross_ff = self.cross_attend_blocks
|
305 |
+
b, *_, device = *hiddens.shape, hiddens.device
|
306 |
+
x = repeat(self.latents, 'n d -> b n d', b = b)
|
307 |
+
hiddens = cross_attn(hiddens, context = x, mask = None) + hiddens
|
308 |
+
hiddens = cross_ff(hiddens) + hiddens
|
309 |
+
if attention_mask !=None:
|
310 |
+
s = torch.sum(hiddens * attention_mask.unsqueeze(-1).float(), dim=1)
|
311 |
+
d = attention_mask.sum(dim=1, keepdim=True).float()
|
312 |
+
hiddens = s / d
|
313 |
+
if self.output_normalize:
|
314 |
+
hiddens = torch.nn.functional.normalize(hiddens, p=2, dim=-1)
|
315 |
+
return hiddens
|
316 |
+
|
317 |
+
class NVEmbedModel(PreTrainedModel):
|
318 |
+
config_class = NVEmbedConfig
|
319 |
+
_no_split_modules = ["MistralDecoderLayer", "LatentAttentionModel"]
|
320 |
+
|
321 |
+
def __init__(self, config: NVEmbedConfig):
|
322 |
+
super().__init__(config)
|
323 |
+
self.latent_attention_model = AutoModel.from_config(config.latent_attention_config)
|
324 |
+
self.embedding_model = AutoModel.from_config(
|
325 |
+
config.text_config,
|
326 |
+
) if config.text_config is not None else None
|
327 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config.text_config._name_or_path) if config.text_config is not None else None
|
328 |
+
self.padding_side = config.padding_side
|
329 |
+
self.is_mask_instruction = config.is_mask_instruction
|
330 |
+
self.add_eos = config.add_eos
|
331 |
+
self.mask_type = config.mask_type
|
332 |
+
if config.add_pad_token and self.tokenizer is not None:
|
333 |
+
self.add_pad_token()
|
334 |
+
|
335 |
+
def add_pad_token(self):
|
336 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
337 |
+
self.tokenizer.padding_side = self.padding_side
|
338 |
+
|
339 |
+
def prepare_kwargs_from_batch(self, batch_dict: dict, instruction_lens: int, device: torch.device):
|
340 |
+
batch_dict = move_to_device(batch_dict, device)
|
341 |
+
attention_mask = batch_dict['attention_mask'].clone() if 'attention_mask' in batch_dict else None
|
342 |
+
if (attention_mask is not None and
|
343 |
+
self.padding_side == "right" and
|
344 |
+
self.is_mask_instruction == True and
|
345 |
+
instruction_lens > 0):
|
346 |
+
# Mask out the instruction tokens for mean-pooling
|
347 |
+
attention_mask[:, :instruction_lens] = 0
|
348 |
+
features: NVEmbedFeatures = {
|
349 |
+
'input_ids': torch.tensor(batch_dict.get('input_ids').to(batch_dict.get('input_ids')).long()),
|
350 |
+
'attention_mask': batch_dict['attention_mask'],
|
351 |
+
'pool_mask': attention_mask,
|
352 |
+
}
|
353 |
+
return features
|
354 |
+
|
355 |
+
@torch.no_grad()
|
356 |
+
def _do_encode(self,
|
357 |
+
prompts: List[str],
|
358 |
+
batch_size: int=1,
|
359 |
+
instruction: str="",
|
360 |
+
max_length: int=4096,
|
361 |
+
num_workers: int=32,
|
362 |
+
**kwargs
|
363 |
+
) -> Union[np.ndarray, torch.FloatTensor]:
|
364 |
+
dataset: Dataset = Dataset.from_dict({'input_texts': prompts})
|
365 |
+
dataset.set_transform(partial(input_transform_func,
|
366 |
+
self.tokenizer,
|
367 |
+
always_add_eos=True,
|
368 |
+
max_length=max_length,
|
369 |
+
instruction=instruction))
|
370 |
+
|
371 |
+
data_collator = DataCollatorWithPadding(self.tokenizer)
|
372 |
+
data_loader = DataLoader(
|
373 |
+
dataset,
|
374 |
+
batch_size=batch_size,
|
375 |
+
shuffle=False,
|
376 |
+
drop_last=False,
|
377 |
+
num_workers=num_workers,
|
378 |
+
collate_fn=data_collator,
|
379 |
+
pin_memory=True)
|
380 |
+
|
381 |
+
if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0:
|
382 |
+
instruction_lens = len(self.tokenizer.tokenize(instruction))
|
383 |
+
else:
|
384 |
+
instruction_lens = 0
|
385 |
+
|
386 |
+
encoded_embeds = []
|
387 |
+
device = next(self.embedding_model.parameters()).device
|
388 |
+
for batch_dict in tqdm(data_loader, desc='encoding', mininterval=10):
|
389 |
+
features = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
|
390 |
+
embeds=self(**features)["sentence_embeddings"].squeeze(1)
|
391 |
+
encoded_embeds.append(embeds)
|
392 |
+
encoded_embeds = torch.cat(encoded_embeds, axis=0)
|
393 |
+
if "return_numpy" in kwargs and kwargs.get("return_numpy"):
|
394 |
+
encoded_embeds = encoded_embeds.cpu().detach().numpy()
|
395 |
+
return encoded_embeds
|
396 |
+
|
397 |
+
def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, pool_mask: Optional[torch.Tensor]=None, return_dict: bool=True):
|
398 |
+
autocast_ctx = torch.autocast if torch.cuda.is_available() else nullcontext
|
399 |
+
with autocast_ctx("cuda"):
|
400 |
+
## decoder only layer
|
401 |
+
outputs = self.embedding_model(
|
402 |
+
input_ids=input_ids,
|
403 |
+
attention_mask=attention_mask,
|
404 |
+
)
|
405 |
+
## latent attention layer
|
406 |
+
embeds = self.latent_attention_model(
|
407 |
+
outputs.last_hidden_state,
|
408 |
+
pool_mask,
|
409 |
+
)
|
410 |
+
if not return_dict:
|
411 |
+
return (embeds,)
|
412 |
+
return {"sentence_embeddings": embeds}
|
413 |
+
|
414 |
+
|
415 |
+
@torch.no_grad()
|
416 |
+
def encode(self, prompts: List[str], instruction: str="", max_length: int=4096, **kwargs):
|
417 |
+
if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0:
|
418 |
+
instruction_lens = len(self.tokenizer.tokenize(instruction))
|
419 |
+
else:
|
420 |
+
instruction_lens = 0
|
421 |
+
|
422 |
+
device = next(self.embedding_model.parameters()).device
|
423 |
+
batch_dict = input_transform_func(self.tokenizer,
|
424 |
+
{"input_texts": [prompt for prompt in prompts]},
|
425 |
+
always_add_eos=True,
|
426 |
+
max_length=max_length,
|
427 |
+
instruction=instruction)
|
428 |
+
|
429 |
+
features: NVEmbedFeatures = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
|
430 |
+
return self(**features)["sentence_embeddings"].squeeze(1)
|
431 |
+
|
432 |
+
|
433 |
+
## AutoModel Register
|
434 |
+
AutoModel.register(NVEmbedConfig, NVEmbedModel)
|
435 |
+
AutoModel.register(LatentAttentionConfig, LatentAttentionModel)
|
436 |
+
AutoModel.register(BidirectionalMistralConfig, BidirectionalMistralModel)
|
437 |
+
|
438 |
+
## Register for auto class
|
439 |
+
NVEmbedModel.register_for_auto_class("AutoModel")
|
440 |
+
LatentAttentionModel.register_for_auto_class("AutoModel")
|
441 |
+
BidirectionalMistralModel.register_for_auto_class("AutoModel")
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 4096,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"additional_special_tokens": [],
|
32 |
+
"bos_token": "<s>",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": "</s>",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|