|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "bignum.h" |
|
#include "utils.h" |
|
|
|
namespace double_conversion { |
|
|
|
Bignum::Bignum() |
|
: bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) { |
|
for (int i = 0; i < kBigitCapacity; ++i) { |
|
bigits_[i] = 0; |
|
} |
|
} |
|
|
|
|
|
template<typename S> |
|
static int BitSize(S value) { |
|
(void) value; |
|
return 8 * sizeof(value); |
|
} |
|
|
|
|
|
void Bignum::AssignUInt16(uint16_t value) { |
|
ASSERT(kBigitSize >= BitSize(value)); |
|
Zero(); |
|
if (value == 0) return; |
|
|
|
EnsureCapacity(1); |
|
bigits_[0] = value; |
|
used_digits_ = 1; |
|
} |
|
|
|
|
|
void Bignum::AssignUInt64(uint64_t value) { |
|
const int kUInt64Size = 64; |
|
|
|
Zero(); |
|
if (value == 0) return; |
|
|
|
int needed_bigits = kUInt64Size / kBigitSize + 1; |
|
EnsureCapacity(needed_bigits); |
|
for (int i = 0; i < needed_bigits; ++i) { |
|
bigits_[i] = value & kBigitMask; |
|
value = value >> kBigitSize; |
|
} |
|
used_digits_ = needed_bigits; |
|
Clamp(); |
|
} |
|
|
|
|
|
void Bignum::AssignBignum(const Bignum& other) { |
|
exponent_ = other.exponent_; |
|
for (int i = 0; i < other.used_digits_; ++i) { |
|
bigits_[i] = other.bigits_[i]; |
|
} |
|
|
|
for (int i = other.used_digits_; i < used_digits_; ++i) { |
|
bigits_[i] = 0; |
|
} |
|
used_digits_ = other.used_digits_; |
|
} |
|
|
|
|
|
static uint64_t ReadUInt64(Vector<const char> buffer, |
|
int from, |
|
int digits_to_read) { |
|
uint64_t result = 0; |
|
for (int i = from; i < from + digits_to_read; ++i) { |
|
int digit = buffer[i] - '0'; |
|
ASSERT(0 <= digit && digit <= 9); |
|
result = result * 10 + digit; |
|
} |
|
return result; |
|
} |
|
|
|
|
|
void Bignum::AssignDecimalString(Vector<const char> value) { |
|
|
|
const int kMaxUint64DecimalDigits = 19; |
|
Zero(); |
|
int length = value.length(); |
|
unsigned int pos = 0; |
|
|
|
while (length >= kMaxUint64DecimalDigits) { |
|
uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits); |
|
pos += kMaxUint64DecimalDigits; |
|
length -= kMaxUint64DecimalDigits; |
|
MultiplyByPowerOfTen(kMaxUint64DecimalDigits); |
|
AddUInt64(digits); |
|
} |
|
uint64_t digits = ReadUInt64(value, pos, length); |
|
MultiplyByPowerOfTen(length); |
|
AddUInt64(digits); |
|
Clamp(); |
|
} |
|
|
|
|
|
static int HexCharValue(char c) { |
|
if ('0' <= c && c <= '9') return c - '0'; |
|
if ('a' <= c && c <= 'f') return 10 + c - 'a'; |
|
ASSERT('A' <= c && c <= 'F'); |
|
return 10 + c - 'A'; |
|
} |
|
|
|
|
|
void Bignum::AssignHexString(Vector<const char> value) { |
|
Zero(); |
|
int length = value.length(); |
|
|
|
int needed_bigits = length * 4 / kBigitSize + 1; |
|
EnsureCapacity(needed_bigits); |
|
int string_index = length - 1; |
|
for (int i = 0; i < needed_bigits - 1; ++i) { |
|
|
|
Chunk current_bigit = 0; |
|
for (int j = 0; j < kBigitSize / 4; j++) { |
|
current_bigit += HexCharValue(value[string_index--]) << (j * 4); |
|
} |
|
bigits_[i] = current_bigit; |
|
} |
|
used_digits_ = needed_bigits - 1; |
|
|
|
Chunk most_significant_bigit = 0; |
|
for (int j = 0; j <= string_index; ++j) { |
|
most_significant_bigit <<= 4; |
|
most_significant_bigit += HexCharValue(value[j]); |
|
} |
|
if (most_significant_bigit != 0) { |
|
bigits_[used_digits_] = most_significant_bigit; |
|
used_digits_++; |
|
} |
|
Clamp(); |
|
} |
|
|
|
|
|
void Bignum::AddUInt64(uint64_t operand) { |
|
if (operand == 0) return; |
|
Bignum other; |
|
other.AssignUInt64(operand); |
|
AddBignum(other); |
|
} |
|
|
|
|
|
void Bignum::AddBignum(const Bignum& other) { |
|
ASSERT(IsClamped()); |
|
ASSERT(other.IsClamped()); |
|
|
|
|
|
|
|
Align(other); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_); |
|
Chunk carry = 0; |
|
int bigit_pos = other.exponent_ - exponent_; |
|
ASSERT(bigit_pos >= 0); |
|
for (int i = 0; i < other.used_digits_; ++i) { |
|
Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry; |
|
bigits_[bigit_pos] = sum & kBigitMask; |
|
carry = sum >> kBigitSize; |
|
bigit_pos++; |
|
} |
|
|
|
while (carry != 0) { |
|
Chunk sum = bigits_[bigit_pos] + carry; |
|
bigits_[bigit_pos] = sum & kBigitMask; |
|
carry = sum >> kBigitSize; |
|
bigit_pos++; |
|
} |
|
used_digits_ = Max(bigit_pos, used_digits_); |
|
ASSERT(IsClamped()); |
|
} |
|
|
|
|
|
void Bignum::SubtractBignum(const Bignum& other) { |
|
ASSERT(IsClamped()); |
|
ASSERT(other.IsClamped()); |
|
|
|
ASSERT(LessEqual(other, *this)); |
|
|
|
Align(other); |
|
|
|
int offset = other.exponent_ - exponent_; |
|
Chunk borrow = 0; |
|
int i; |
|
for (i = 0; i < other.used_digits_; ++i) { |
|
ASSERT((borrow == 0) || (borrow == 1)); |
|
Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow; |
|
bigits_[i + offset] = difference & kBigitMask; |
|
borrow = difference >> (kChunkSize - 1); |
|
} |
|
while (borrow != 0) { |
|
Chunk difference = bigits_[i + offset] - borrow; |
|
bigits_[i + offset] = difference & kBigitMask; |
|
borrow = difference >> (kChunkSize - 1); |
|
++i; |
|
} |
|
Clamp(); |
|
} |
|
|
|
|
|
void Bignum::ShiftLeft(int shift_amount) { |
|
if (used_digits_ == 0) return; |
|
exponent_ += shift_amount / kBigitSize; |
|
int local_shift = shift_amount % kBigitSize; |
|
EnsureCapacity(used_digits_ + 1); |
|
BigitsShiftLeft(local_shift); |
|
} |
|
|
|
|
|
void Bignum::MultiplyByUInt32(uint32_t factor) { |
|
if (factor == 1) return; |
|
if (factor == 0) { |
|
Zero(); |
|
return; |
|
} |
|
if (used_digits_ == 0) return; |
|
|
|
|
|
|
|
ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1); |
|
DoubleChunk carry = 0; |
|
for (int i = 0; i < used_digits_; ++i) { |
|
DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry; |
|
bigits_[i] = static_cast<Chunk>(product & kBigitMask); |
|
carry = (product >> kBigitSize); |
|
} |
|
while (carry != 0) { |
|
EnsureCapacity(used_digits_ + 1); |
|
bigits_[used_digits_] = carry & kBigitMask; |
|
used_digits_++; |
|
carry >>= kBigitSize; |
|
} |
|
} |
|
|
|
|
|
void Bignum::MultiplyByUInt64(uint64_t factor) { |
|
if (factor == 1) return; |
|
if (factor == 0) { |
|
Zero(); |
|
return; |
|
} |
|
ASSERT(kBigitSize < 32); |
|
uint64_t carry = 0; |
|
uint64_t low = factor & 0xFFFFFFFF; |
|
uint64_t high = factor >> 32; |
|
for (int i = 0; i < used_digits_; ++i) { |
|
uint64_t product_low = low * bigits_[i]; |
|
uint64_t product_high = high * bigits_[i]; |
|
uint64_t tmp = (carry & kBigitMask) + product_low; |
|
bigits_[i] = tmp & kBigitMask; |
|
carry = (carry >> kBigitSize) + (tmp >> kBigitSize) + |
|
(product_high << (32 - kBigitSize)); |
|
} |
|
while (carry != 0) { |
|
EnsureCapacity(used_digits_ + 1); |
|
bigits_[used_digits_] = carry & kBigitMask; |
|
used_digits_++; |
|
carry >>= kBigitSize; |
|
} |
|
} |
|
|
|
|
|
void Bignum::MultiplyByPowerOfTen(int exponent) { |
|
const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d); |
|
const uint16_t kFive1 = 5; |
|
const uint16_t kFive2 = kFive1 * 5; |
|
const uint16_t kFive3 = kFive2 * 5; |
|
const uint16_t kFive4 = kFive3 * 5; |
|
const uint16_t kFive5 = kFive4 * 5; |
|
const uint16_t kFive6 = kFive5 * 5; |
|
const uint32_t kFive7 = kFive6 * 5; |
|
const uint32_t kFive8 = kFive7 * 5; |
|
const uint32_t kFive9 = kFive8 * 5; |
|
const uint32_t kFive10 = kFive9 * 5; |
|
const uint32_t kFive11 = kFive10 * 5; |
|
const uint32_t kFive12 = kFive11 * 5; |
|
const uint32_t kFive13 = kFive12 * 5; |
|
const uint32_t kFive1_to_12[] = |
|
{ kFive1, kFive2, kFive3, kFive4, kFive5, kFive6, |
|
kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 }; |
|
|
|
ASSERT(exponent >= 0); |
|
if (exponent == 0) return; |
|
if (used_digits_ == 0) return; |
|
|
|
|
|
int remaining_exponent = exponent; |
|
while (remaining_exponent >= 27) { |
|
MultiplyByUInt64(kFive27); |
|
remaining_exponent -= 27; |
|
} |
|
while (remaining_exponent >= 13) { |
|
MultiplyByUInt32(kFive13); |
|
remaining_exponent -= 13; |
|
} |
|
if (remaining_exponent > 0) { |
|
MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]); |
|
} |
|
ShiftLeft(exponent); |
|
} |
|
|
|
|
|
void Bignum::Square() { |
|
ASSERT(IsClamped()); |
|
int product_length = 2 * used_digits_; |
|
EnsureCapacity(product_length); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) { |
|
UNIMPLEMENTED(); |
|
} |
|
DoubleChunk accumulator = 0; |
|
|
|
int copy_offset = used_digits_; |
|
for (int i = 0; i < used_digits_; ++i) { |
|
bigits_[copy_offset + i] = bigits_[i]; |
|
} |
|
|
|
for (int i = 0; i < used_digits_; ++i) { |
|
|
|
|
|
int bigit_index1 = i; |
|
int bigit_index2 = 0; |
|
|
|
while (bigit_index1 >= 0) { |
|
Chunk chunk1 = bigits_[copy_offset + bigit_index1]; |
|
Chunk chunk2 = bigits_[copy_offset + bigit_index2]; |
|
accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; |
|
bigit_index1--; |
|
bigit_index2++; |
|
} |
|
bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; |
|
accumulator >>= kBigitSize; |
|
} |
|
for (int i = used_digits_; i < product_length; ++i) { |
|
int bigit_index1 = used_digits_ - 1; |
|
int bigit_index2 = i - bigit_index1; |
|
|
|
|
|
while (bigit_index2 < used_digits_) { |
|
Chunk chunk1 = bigits_[copy_offset + bigit_index1]; |
|
Chunk chunk2 = bigits_[copy_offset + bigit_index2]; |
|
accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; |
|
bigit_index1--; |
|
bigit_index2++; |
|
} |
|
|
|
|
|
|
|
bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; |
|
accumulator >>= kBigitSize; |
|
} |
|
|
|
|
|
ASSERT(accumulator == 0); |
|
|
|
|
|
used_digits_ = product_length; |
|
exponent_ *= 2; |
|
Clamp(); |
|
} |
|
|
|
|
|
void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) { |
|
ASSERT(base != 0); |
|
ASSERT(power_exponent >= 0); |
|
if (power_exponent == 0) { |
|
AssignUInt16(1); |
|
return; |
|
} |
|
Zero(); |
|
int shifts = 0; |
|
|
|
|
|
|
|
while ((base & 1) == 0) { |
|
base >>= 1; |
|
shifts++; |
|
} |
|
int bit_size = 0; |
|
int tmp_base = base; |
|
while (tmp_base != 0) { |
|
tmp_base >>= 1; |
|
bit_size++; |
|
} |
|
int final_size = bit_size * power_exponent; |
|
|
|
EnsureCapacity(final_size / kBigitSize + 2); |
|
|
|
|
|
int mask = 1; |
|
while (power_exponent >= mask) mask <<= 1; |
|
|
|
|
|
|
|
|
|
mask >>= 2; |
|
uint64_t this_value = base; |
|
|
|
bool delayed_multipliciation = false; |
|
const uint64_t max_32bits = 0xFFFFFFFF; |
|
while (mask != 0 && this_value <= max_32bits) { |
|
this_value = this_value * this_value; |
|
|
|
|
|
if ((power_exponent & mask) != 0) { |
|
uint64_t base_bits_mask = |
|
~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1); |
|
bool high_bits_zero = (this_value & base_bits_mask) == 0; |
|
if (high_bits_zero) { |
|
this_value *= base; |
|
} else { |
|
delayed_multipliciation = true; |
|
} |
|
} |
|
mask >>= 1; |
|
} |
|
AssignUInt64(this_value); |
|
if (delayed_multipliciation) { |
|
MultiplyByUInt32(base); |
|
} |
|
|
|
|
|
while (mask != 0) { |
|
Square(); |
|
if ((power_exponent & mask) != 0) { |
|
MultiplyByUInt32(base); |
|
} |
|
mask >>= 1; |
|
} |
|
|
|
|
|
ShiftLeft(shifts * power_exponent); |
|
} |
|
|
|
|
|
|
|
uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) { |
|
ASSERT(IsClamped()); |
|
ASSERT(other.IsClamped()); |
|
ASSERT(other.used_digits_ > 0); |
|
|
|
|
|
|
|
if (BigitLength() < other.BigitLength()) { |
|
return 0; |
|
} |
|
|
|
Align(other); |
|
|
|
uint16_t result = 0; |
|
|
|
|
|
|
|
while (BigitLength() > other.BigitLength()) { |
|
|
|
|
|
|
|
ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16)); |
|
ASSERT(bigits_[used_digits_ - 1] < 0x10000); |
|
|
|
|
|
result += static_cast<uint16_t>(bigits_[used_digits_ - 1]); |
|
SubtractTimes(other, bigits_[used_digits_ - 1]); |
|
} |
|
|
|
ASSERT(BigitLength() == other.BigitLength()); |
|
|
|
|
|
|
|
|
|
Chunk this_bigit = bigits_[used_digits_ - 1]; |
|
Chunk other_bigit = other.bigits_[other.used_digits_ - 1]; |
|
|
|
if (other.used_digits_ == 1) { |
|
|
|
int quotient = this_bigit / other_bigit; |
|
bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient; |
|
ASSERT(quotient < 0x10000); |
|
result += static_cast<uint16_t>(quotient); |
|
Clamp(); |
|
return result; |
|
} |
|
|
|
int division_estimate = this_bigit / (other_bigit + 1); |
|
ASSERT(division_estimate < 0x10000); |
|
result += static_cast<uint16_t>(division_estimate); |
|
SubtractTimes(other, division_estimate); |
|
|
|
if (other_bigit * (division_estimate + 1) > this_bigit) { |
|
|
|
|
|
return result; |
|
} |
|
|
|
while (LessEqual(other, *this)) { |
|
SubtractBignum(other); |
|
result++; |
|
} |
|
return result; |
|
} |
|
|
|
|
|
template<typename S> |
|
static int SizeInHexChars(S number) { |
|
ASSERT(number > 0); |
|
int result = 0; |
|
while (number != 0) { |
|
number >>= 4; |
|
result++; |
|
} |
|
return result; |
|
} |
|
|
|
|
|
static char HexCharOfValue(int value) { |
|
ASSERT(0 <= value && value <= 16); |
|
if (value < 10) return static_cast<char>(value + '0'); |
|
return static_cast<char>(value - 10 + 'A'); |
|
} |
|
|
|
|
|
bool Bignum::ToHexString(char* buffer, int buffer_size) const { |
|
ASSERT(IsClamped()); |
|
|
|
ASSERT(kBigitSize % 4 == 0); |
|
const int kHexCharsPerBigit = kBigitSize / 4; |
|
|
|
if (used_digits_ == 0) { |
|
if (buffer_size < 2) return false; |
|
buffer[0] = '0'; |
|
buffer[1] = '\0'; |
|
return true; |
|
} |
|
|
|
int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit + |
|
SizeInHexChars(bigits_[used_digits_ - 1]) + 1; |
|
if (needed_chars > buffer_size) return false; |
|
int string_index = needed_chars - 1; |
|
buffer[string_index--] = '\0'; |
|
for (int i = 0; i < exponent_; ++i) { |
|
for (int j = 0; j < kHexCharsPerBigit; ++j) { |
|
buffer[string_index--] = '0'; |
|
} |
|
} |
|
for (int i = 0; i < used_digits_ - 1; ++i) { |
|
Chunk current_bigit = bigits_[i]; |
|
for (int j = 0; j < kHexCharsPerBigit; ++j) { |
|
buffer[string_index--] = HexCharOfValue(current_bigit & 0xF); |
|
current_bigit >>= 4; |
|
} |
|
} |
|
|
|
Chunk most_significant_bigit = bigits_[used_digits_ - 1]; |
|
while (most_significant_bigit != 0) { |
|
buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF); |
|
most_significant_bigit >>= 4; |
|
} |
|
return true; |
|
} |
|
|
|
|
|
Bignum::Chunk Bignum::BigitAt(int index) const { |
|
if (index >= BigitLength()) return 0; |
|
if (index < exponent_) return 0; |
|
return bigits_[index - exponent_]; |
|
} |
|
|
|
|
|
int Bignum::Compare(const Bignum& a, const Bignum& b) { |
|
ASSERT(a.IsClamped()); |
|
ASSERT(b.IsClamped()); |
|
int bigit_length_a = a.BigitLength(); |
|
int bigit_length_b = b.BigitLength(); |
|
if (bigit_length_a < bigit_length_b) return -1; |
|
if (bigit_length_a > bigit_length_b) return +1; |
|
for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) { |
|
Chunk bigit_a = a.BigitAt(i); |
|
Chunk bigit_b = b.BigitAt(i); |
|
if (bigit_a < bigit_b) return -1; |
|
if (bigit_a > bigit_b) return +1; |
|
|
|
} |
|
return 0; |
|
} |
|
|
|
|
|
int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) { |
|
ASSERT(a.IsClamped()); |
|
ASSERT(b.IsClamped()); |
|
ASSERT(c.IsClamped()); |
|
if (a.BigitLength() < b.BigitLength()) { |
|
return PlusCompare(b, a, c); |
|
} |
|
if (a.BigitLength() + 1 < c.BigitLength()) return -1; |
|
if (a.BigitLength() > c.BigitLength()) return +1; |
|
|
|
|
|
|
|
if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) { |
|
return -1; |
|
} |
|
|
|
Chunk borrow = 0; |
|
|
|
int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_); |
|
for (int i = c.BigitLength() - 1; i >= min_exponent; --i) { |
|
Chunk chunk_a = a.BigitAt(i); |
|
Chunk chunk_b = b.BigitAt(i); |
|
Chunk chunk_c = c.BigitAt(i); |
|
Chunk sum = chunk_a + chunk_b; |
|
if (sum > chunk_c + borrow) { |
|
return +1; |
|
} else { |
|
borrow = chunk_c + borrow - sum; |
|
if (borrow > 1) return -1; |
|
borrow <<= kBigitSize; |
|
} |
|
} |
|
if (borrow == 0) return 0; |
|
return -1; |
|
} |
|
|
|
|
|
void Bignum::Clamp() { |
|
while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) { |
|
used_digits_--; |
|
} |
|
if (used_digits_ == 0) { |
|
|
|
exponent_ = 0; |
|
} |
|
} |
|
|
|
|
|
bool Bignum::IsClamped() const { |
|
return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0; |
|
} |
|
|
|
|
|
void Bignum::Zero() { |
|
for (int i = 0; i < used_digits_; ++i) { |
|
bigits_[i] = 0; |
|
} |
|
used_digits_ = 0; |
|
exponent_ = 0; |
|
} |
|
|
|
|
|
void Bignum::Align(const Bignum& other) { |
|
if (exponent_ > other.exponent_) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
int zero_digits = exponent_ - other.exponent_; |
|
EnsureCapacity(used_digits_ + zero_digits); |
|
for (int i = used_digits_ - 1; i >= 0; --i) { |
|
bigits_[i + zero_digits] = bigits_[i]; |
|
} |
|
for (int i = 0; i < zero_digits; ++i) { |
|
bigits_[i] = 0; |
|
} |
|
used_digits_ += zero_digits; |
|
exponent_ -= zero_digits; |
|
ASSERT(used_digits_ >= 0); |
|
ASSERT(exponent_ >= 0); |
|
} |
|
} |
|
|
|
|
|
void Bignum::BigitsShiftLeft(int shift_amount) { |
|
ASSERT(shift_amount < kBigitSize); |
|
ASSERT(shift_amount >= 0); |
|
Chunk carry = 0; |
|
for (int i = 0; i < used_digits_; ++i) { |
|
Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount); |
|
bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask; |
|
carry = new_carry; |
|
} |
|
if (carry != 0) { |
|
bigits_[used_digits_] = carry; |
|
used_digits_++; |
|
} |
|
} |
|
|
|
|
|
void Bignum::SubtractTimes(const Bignum& other, int factor) { |
|
ASSERT(exponent_ <= other.exponent_); |
|
if (factor < 3) { |
|
for (int i = 0; i < factor; ++i) { |
|
SubtractBignum(other); |
|
} |
|
return; |
|
} |
|
Chunk borrow = 0; |
|
int exponent_diff = other.exponent_ - exponent_; |
|
for (int i = 0; i < other.used_digits_; ++i) { |
|
DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i]; |
|
DoubleChunk remove = borrow + product; |
|
Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask); |
|
bigits_[i + exponent_diff] = difference & kBigitMask; |
|
borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) + |
|
(remove >> kBigitSize)); |
|
} |
|
for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) { |
|
if (borrow == 0) return; |
|
Chunk difference = bigits_[i] - borrow; |
|
bigits_[i] = difference & kBigitMask; |
|
borrow = difference >> (kChunkSize - 1); |
|
} |
|
Clamp(); |
|
} |
|
|
|
|
|
} |
|
|