xls-r-300m-sv-robust / kenlm /util /probing_hash_table.hh
marinone94's picture
Training in progress, epoch 0
1ce325b
raw
history blame
13.2 kB
#ifndef UTIL_PROBING_HASH_TABLE_H
#define UTIL_PROBING_HASH_TABLE_H
#include "exception.hh"
#include "mmap.hh"
#include <algorithm>
#include <cstddef>
#include <functional>
#include <vector>
#include <cassert>
#include <stdint.h>
namespace util {
/* Thrown when table grows too large */
class ProbingSizeException : public Exception {
public:
ProbingSizeException() throw() {}
~ProbingSizeException() throw() {}
};
// std::identity is an SGI extension :-(
struct IdentityHash {
template <class T> T operator()(T arg) const { return arg; }
};
class DivMod {
public:
explicit DivMod(std::size_t buckets) : buckets_(buckets) {}
static uint64_t RoundBuckets(uint64_t from) {
return from;
}
template <class It> It Ideal(It begin, uint64_t hash) const {
return begin + (hash % buckets_);
}
template <class BaseIt, class OutIt> void Next(BaseIt begin, BaseIt end, OutIt &it) const {
if (++it == end) it = begin;
}
void Double() {
buckets_ *= 2;
}
private:
std::size_t buckets_;
};
class Power2Mod {
public:
explicit Power2Mod(std::size_t buckets) {
UTIL_THROW_IF(!buckets || (((buckets - 1) & buckets)), ProbingSizeException, "Size " << buckets << " is not a power of 2.");
mask_ = buckets - 1;
}
// Round up to next power of 2.
static uint64_t RoundBuckets(uint64_t from) {
--from;
from |= from >> 1;
from |= from >> 2;
from |= from >> 4;
from |= from >> 8;
from |= from >> 16;
from |= from >> 32;
return from + 1;
}
template <class It> It Ideal(It begin, uint64_t hash) const {
return begin + (hash & mask_);
}
template <class BaseIt, class OutIt> void Next(BaseIt begin, BaseIt /*end*/, OutIt &it) const {
it = begin + ((it - begin + 1) & mask_);
}
void Double() {
mask_ = (mask_ << 1) | 1;
}
private:
std::size_t mask_;
};
template <class EntryT, class HashT, class EqualT> class AutoProbing;
/* Non-standard hash table
* Buckets must be set at the beginning and must be greater than maximum number
* of elements, else it throws ProbingSizeException.
* Memory management and initialization is externalized to make it easier to
* serialize these to disk and load them quickly.
* Uses linear probing to find value.
* Only insert and lookup operations.
*/
template <class EntryT, class HashT, class EqualT = std::equal_to<typename EntryT::Key>, class ModT = DivMod> class ProbingHashTable {
public:
typedef EntryT Entry;
typedef typename Entry::Key Key;
typedef const Entry *ConstIterator;
typedef Entry *MutableIterator;
typedef HashT Hash;
typedef EqualT Equal;
typedef ModT Mod;
static uint64_t Size(uint64_t entries, float multiplier) {
uint64_t buckets = Mod::RoundBuckets(std::max(entries + 1, static_cast<uint64_t>(multiplier * static_cast<float>(entries))));
return buckets * sizeof(Entry);
}
// Must be assigned to later.
ProbingHashTable() : mod_(1), entries_(0)
#ifdef DEBUG
, initialized_(false)
#endif
{}
ProbingHashTable(void *start, std::size_t allocated, const Key &invalid = Key(), const Hash &hash_func = Hash(), const Equal &equal_func = Equal())
: begin_(reinterpret_cast<MutableIterator>(start)),
end_(begin_ + allocated / sizeof(Entry)),
buckets_(end_ - begin_),
invalid_(invalid),
hash_(hash_func),
equal_(equal_func),
mod_(end_ - begin_),
entries_(0)
#ifdef DEBUG
, initialized_(true)
#endif
{}
void Relocate(void *new_base) {
begin_ = reinterpret_cast<MutableIterator>(new_base);
end_ = begin_ + buckets_;
}
MutableIterator Ideal(const Key key) {
return mod_.Ideal(begin_, hash_(key));
}
ConstIterator Ideal(const Key key) const {
return mod_.Ideal(begin_, hash_(key));
}
template <class T> MutableIterator Insert(const T &t) {
#ifdef DEBUG
assert(initialized_);
#endif
UTIL_THROW_IF(++entries_ >= buckets_, ProbingSizeException, "Hash table with " << buckets_ << " buckets is full.");
return UncheckedInsert(t);
}
// Return true if the value was found (and not inserted). This is consistent with Find but the opposite of hash_map!
template <class T> bool FindOrInsert(const T &t, MutableIterator &out) {
#ifdef DEBUG
assert(initialized_);
#endif
for (MutableIterator i = Ideal(t.GetKey());;mod_.Next(begin_, end_, i)) {
Key got(i->GetKey());
if (equal_(got, t.GetKey())) { out = i; return true; }
if (equal_(got, invalid_)) {
UTIL_THROW_IF(++entries_ >= buckets_, ProbingSizeException, "Hash table with " << buckets_ << " buckets is full.");
*i = t;
out = i;
return false;
}
}
}
void FinishedInserting() {}
// Don't change anything related to GetKey,
template <class Key> bool UnsafeMutableFind(const Key key, MutableIterator &out) {
#ifdef DEBUG
assert(initialized_);
#endif
for (MutableIterator i(Ideal(key));; mod_.Next(begin_, end_, i)) {
Key got(i->GetKey());
if (equal_(got, key)) { out = i; return true; }
if (equal_(got, invalid_)) return false;
}
}
// Like UnsafeMutableFind, but the key must be there.
template <class Key> MutableIterator UnsafeMutableMustFind(const Key key) {
for (MutableIterator i(Ideal(key));; mod_.Next(begin_, end_, i)) {
Key got(i->GetKey());
if (equal_(got, key)) { return i; }
assert(!equal_(got, invalid_));
}
}
// Iterator is both input and output.
template <class Key> bool FindFromIdeal(const Key key, ConstIterator &i) const {
#ifdef DEBUG
assert(initialized_);
#endif
for (;; mod_.Next(begin_, end_, i)) {
Key got(i->GetKey());
if (equal_(got, key)) return true;
if (equal_(got, invalid_)) return false;
}
}
template <class Key> bool Find(const Key key, ConstIterator &out) const {
out = Ideal(key);
return FindFromIdeal(key, out);
}
// Like Find but we're sure it must be there.
template <class Key> ConstIterator MustFind(const Key key) const {
for (ConstIterator i(Ideal(key));; mod_.Next(begin_, end_, i)) {
Key got(i->GetKey());
if (equal_(got, key)) { return i; }
assert(!equal_(got, invalid_));
}
}
void Clear() {
Entry invalid;
invalid.SetKey(invalid_);
std::fill(begin_, end_, invalid);
entries_ = 0;
}
// Return number of entries assuming no serialization went on.
std::size_t SizeNoSerialization() const {
return entries_;
}
// Return memory size expected by Double.
std::size_t DoubleTo() const {
return buckets_ * 2 * sizeof(Entry);
}
// Inform the table that it has double the amount of memory.
// Pass clear_new = false if you are sure the new memory is initialized
// properly (to invalid_) i.e. by mremap.
void Double(void *new_base, bool clear_new = true) {
begin_ = static_cast<MutableIterator>(new_base);
MutableIterator old_end = begin_ + buckets_;
buckets_ *= 2;
end_ = begin_ + buckets_;
mod_.Double();
if (clear_new) {
Entry invalid;
invalid.SetKey(invalid_);
std::fill(old_end, end_, invalid);
}
std::vector<Entry> rolled_over;
// Move roll-over entries to a buffer because they might not roll over anymore. This should be small.
for (MutableIterator i = begin_; i != old_end && !equal_(i->GetKey(), invalid_); ++i) {
rolled_over.push_back(*i);
i->SetKey(invalid_);
}
/* Re-insert everything. Entries might go backwards to take over a
* recently opened gap, stay, move to new territory, or wrap around. If
* an entry wraps around, it might go to a pointer greater than i (which
* can happen at the beginning) and it will be revisited to possibly fill
* in a gap created later.
*/
Entry temp;
for (MutableIterator i = begin_; i != old_end; ++i) {
if (!equal_(i->GetKey(), invalid_)) {
temp = *i;
i->SetKey(invalid_);
UncheckedInsert(temp);
}
}
// Put the roll-over entries back in.
for (typename std::vector<Entry>::const_iterator i(rolled_over.begin()); i != rolled_over.end(); ++i) {
UncheckedInsert(*i);
}
}
// Mostly for tests, check consistency of every entry.
void CheckConsistency() {
MutableIterator last;
for (last = end_ - 1; last >= begin_ && !equal_(last->GetKey(), invalid_); --last) {}
UTIL_THROW_IF(last == begin_, ProbingSizeException, "Completely full");
MutableIterator i;
// Beginning can be wrap-arounds.
for (i = begin_; !equal_(i->GetKey(), invalid_); ++i) {
MutableIterator ideal = Ideal(i->GetKey());
UTIL_THROW_IF(ideal > i && ideal <= last, Exception, "Inconsistency at position " << (i - begin_) << " should be at " << (ideal - begin_));
}
MutableIterator pre_gap = i;
for (; i != end_; ++i) {
if (equal_(i->GetKey(), invalid_)) {
pre_gap = i;
continue;
}
MutableIterator ideal = Ideal(i->GetKey());
UTIL_THROW_IF(ideal > i || ideal <= pre_gap, Exception, "Inconsistency at position " << (i - begin_) << " with ideal " << (ideal - begin_));
}
}
ConstIterator RawBegin() const {
return begin_;
}
ConstIterator RawEnd() const {
return end_;
}
private:
friend class AutoProbing<Entry, Hash, Equal>;
template <class T> MutableIterator UncheckedInsert(const T &t) {
for (MutableIterator i(Ideal(t.GetKey()));; mod_.Next(begin_, end_, i)) {
if (equal_(i->GetKey(), invalid_)) { *i = t; return i; }
}
}
MutableIterator begin_;
MutableIterator end_;
std::size_t buckets_;
Key invalid_;
Hash hash_;
Equal equal_;
Mod mod_;
std::size_t entries_;
#ifdef DEBUG
bool initialized_;
#endif
};
// Resizable linear probing hash table. This owns the memory.
template <class EntryT, class HashT, class EqualT = std::equal_to<typename EntryT::Key> > class AutoProbing {
private:
typedef ProbingHashTable<EntryT, HashT, EqualT, Power2Mod> Backend;
public:
static std::size_t MemUsage(std::size_t size, float multiplier = 1.5) {
return Backend::Size(size, multiplier);
}
typedef EntryT Entry;
typedef typename Entry::Key Key;
typedef const Entry *ConstIterator;
typedef Entry *MutableIterator;
typedef HashT Hash;
typedef EqualT Equal;
AutoProbing(std::size_t initial_size = 5, const Key &invalid = Key(), const Hash &hash_func = Hash(), const Equal &equal_func = Equal()) :
allocated_(Backend::Size(initial_size, 1.2)), mem_(allocated_, KeyIsRawZero(invalid)), backend_(mem_.get(), allocated_, invalid, hash_func, equal_func) {
threshold_ = std::min<std::size_t>(backend_.buckets_ - 1, backend_.buckets_ * 0.9);
if (!KeyIsRawZero(invalid)) {
Clear();
}
}
// Assumes that the key is unique. Multiple insertions won't cause a failure, just inconsistent lookup.
template <class T> MutableIterator Insert(const T &t) {
++backend_.entries_;
DoubleIfNeeded();
return backend_.UncheckedInsert(t);
}
template <class T> bool FindOrInsert(const T &t, MutableIterator &out) {
DoubleIfNeeded();
return backend_.FindOrInsert(t, out);
}
template <class Key> bool UnsafeMutableFind(const Key key, MutableIterator &out) {
return backend_.UnsafeMutableFind(key, out);
}
template <class Key> MutableIterator UnsafeMutableMustFind(const Key key) {
return backend_.UnsafeMutableMustFind(key);
}
template <class Key> bool Find(const Key key, ConstIterator &out) const {
return backend_.Find(key, out);
}
template <class Key> ConstIterator MustFind(const Key key) const {
return backend_.MustFind(key);
}
std::size_t Size() const {
return backend_.SizeNoSerialization();
}
void Clear() {
backend_.Clear();
}
ConstIterator RawBegin() const {
return backend_.RawBegin();
}
ConstIterator RawEnd() const {
return backend_.RawEnd();
}
private:
void DoubleIfNeeded() {
if (UTIL_LIKELY(Size() < threshold_))
return;
HugeRealloc(backend_.DoubleTo(), KeyIsRawZero(backend_.invalid_), mem_);
allocated_ = backend_.DoubleTo();
backend_.Double(mem_.get(), !KeyIsRawZero(backend_.invalid_));
threshold_ = std::min<std::size_t>(backend_.buckets_ - 1, backend_.buckets_ * 0.9);
}
bool KeyIsRawZero(const Key &key) {
for (const uint8_t *i = reinterpret_cast<const uint8_t*>(&key); i < reinterpret_cast<const uint8_t*>(&key) + sizeof(Key); ++i) {
if (*i) return false;
}
return true;
}
std::size_t allocated_;
util::scoped_memory mem_;
Backend backend_;
std::size_t threshold_;
};
} // namespace util
#endif // UTIL_PROBING_HASH_TABLE_H