update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: BERT-evidence-types
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# BERT-evidence-types
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.9735
|
20 |
+
- Macro f1: 0.3791
|
21 |
+
- Weighted f1: 0.6925
|
22 |
+
- Accuracy: 0.7070
|
23 |
+
- Balanced accuracy: 0.3625
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 2e-05
|
43 |
+
- train_batch_size: 16
|
44 |
+
- eval_batch_size: 16
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 20
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Macro f1 | Weighted f1 | Accuracy | Balanced accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:-----------------:|
|
55 |
+
| 1.098 | 1.0 | 250 | 1.0176 | 0.2666 | 0.6861 | 0.7070 | 0.2775 |
|
56 |
+
| 0.7656 | 2.0 | 500 | 1.0072 | 0.4124 | 0.7126 | 0.7215 | 0.3876 |
|
57 |
+
| 0.5045 | 3.0 | 750 | 1.1791 | 0.3759 | 0.6843 | 0.6910 | 0.3799 |
|
58 |
+
| 0.2874 | 4.0 | 1000 | 1.4338 | 0.3738 | 0.6888 | 0.6986 | 0.3705 |
|
59 |
+
| 0.1599 | 5.0 | 1250 | 1.8058 | 0.3839 | 0.6947 | 0.7070 | 0.3682 |
|
60 |
+
| 0.0991 | 6.0 | 1500 | 2.0263 | 0.3777 | 0.6793 | 0.6903 | 0.3627 |
|
61 |
+
| 0.0529 | 7.0 | 1750 | 2.2380 | 0.4046 | 0.6932 | 0.7047 | 0.3877 |
|
62 |
+
| 0.0311 | 8.0 | 2000 | 2.4153 | 0.4185 | 0.6999 | 0.7131 | 0.3899 |
|
63 |
+
| 0.0129 | 9.0 | 2250 | 2.7230 | 0.3702 | 0.6852 | 0.7123 | 0.3331 |
|
64 |
+
| 0.0102 | 10.0 | 2500 | 2.6453 | 0.4115 | 0.6934 | 0.7070 | 0.3880 |
|
65 |
+
| 0.0141 | 11.0 | 2750 | 2.7078 | 0.4054 | 0.6859 | 0.6979 | 0.3863 |
|
66 |
+
| 0.0088 | 12.0 | 3000 | 2.7182 | 0.3724 | 0.6904 | 0.7062 | 0.3559 |
|
67 |
+
| 0.0061 | 13.0 | 3250 | 2.7814 | 0.4091 | 0.6917 | 0.7055 | 0.3839 |
|
68 |
+
| 0.0069 | 14.0 | 3500 | 2.8035 | 0.3836 | 0.6986 | 0.7108 | 0.3688 |
|
69 |
+
| 0.0067 | 15.0 | 3750 | 2.9326 | 0.4119 | 0.6952 | 0.7139 | 0.3793 |
|
70 |
+
| 0.0049 | 16.0 | 4000 | 2.9338 | 0.4133 | 0.6885 | 0.7040 | 0.3794 |
|
71 |
+
| 0.0065 | 17.0 | 4250 | 2.9380 | 0.3820 | 0.6964 | 0.7100 | 0.3650 |
|
72 |
+
| 0.0045 | 18.0 | 4500 | 2.9439 | 0.3802 | 0.6925 | 0.7055 | 0.3646 |
|
73 |
+
| 0.0044 | 19.0 | 4750 | 2.9731 | 0.3796 | 0.6932 | 0.7078 | 0.3626 |
|
74 |
+
| 0.0056 | 20.0 | 5000 | 2.9735 | 0.3791 | 0.6925 | 0.7070 | 0.3625 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.19.2
|
80 |
+
- Pytorch 1.11.0+cu113
|
81 |
+
- Datasets 2.2.2
|
82 |
+
- Tokenizers 0.12.1
|