marcus07 commited on
Commit
9aae988
1 Parent(s): 9c897ce

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 275.10 +/- 21.66
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae183b865f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae183b86680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae183b86710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae183b867a0>", "_build": "<function ActorCriticPolicy._build at 0x7ae183b86830>", "forward": "<function ActorCriticPolicy.forward at 0x7ae183b868c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae183b86950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae183b869e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ae183b86a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae183b86b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae183b86b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae183b86c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ae183d1fe80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710397820748999477, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADDur2UOJk+5jIfPlbxxr6GJtu8JincPAAAAAAAAAAAmh26u2u6tD+ISBO/1mg5PeXi1zuIcgU+AAAAAAAAAACaPye8zjf0PuPnzzyfdOC+onsgvUoMIj0AAAAAAAAAADNBBjzwIJg/QgYQPS4/C78t/Tc9iLPiPQAAAAAAAAAAbbUgvlX8Rz9VYQq+yRgWv8n5cL4Z/jE9AAAAAAAAAACACTG9heq9u95kHzz31kI85NUkPQJZKL0AAIA/AACAP+ZKA71SKuO7R/ujPJYJzTwhU029tQeqPQAAgD8AAIA/WvuyPSk4Wrp9X1w4MN47tW9RxTqionW3AACAPwAAgD8aJmw93nuMPz0m+z1VzgO/cslLPlpssD0AAAAAAAAAAObowD3bbHE/A+Tava0r5r44uik+jm+ovQAAAAAAAAAABpFcPgxslD/ynzc+QxwEv60pyz4Vm1k8AAAAAAAAAACaz548H9Deu+ByyruSpJY8reJDPeX/fL0AAIA/AACAP5qL3rx1yR4+O/dxPsohoL693Wo92+5ZPQAAAAAAAAAAmvOdvFzjrD5f8q08WcnEvlUjETy9+lm9AAAAAAAAAADzFom9rpmeuidAubkEKM60iXzOOg0M1TgAAAAAAACAP2YZOr07Q7A/e3OAvsyfmr6K4bK9X4EWvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHL4xjFyaNOMAWyUS9CMAXSUR0Cmrxgdfb9IdX2UKGgGR0Bw17enAIppaAdL4WgIR0CmrxcNx2jgdX2UKGgGR0BzBsBBAv+PaAdL1WgIR0Cmr1RJmNBGdX2UKGgGR0Byhy/ATIvKaAdL2mgIR0Cmr1iY1He8dX2UKGgGR0BxmwJMQEpzaAdL6WgIR0Cmr9XLFGXpdX2UKGgGR0BxJZCa7VawaAdL1mgIR0CmsBdi2DxtdX2UKGgGR0BxbPw9aEBbaAdL0mgIR0CmsDAWSEDhdX2UKGgGR0BxWmDWbwz+aAdL7WgIR0CmsGrY5DJEdX2UKGgGR0BuGPqgRK6GaAdL1WgIR0CmsHE2P1cudX2UKGgGR0Bx03Xf642CaAdL+mgIR0CmsIbp/wy7dX2UKGgGR0Bxra+WWyC4aAdL3GgIR0CmsKPLgXMydX2UKGgGR0ByRiQp4KQaaAdLx2gIR0CmsKfZuhsZdX2UKGgGR0Bw+4jgQ6IWaAdL32gIR0CmsPsQd0aIdX2UKGgGR0Bz3GM85jpcaAdLyGgIR0CmsQBVMmF8dX2UKGgGR0BxqFRwZOzqaAdL2WgIR0CmsWUC7sfJdX2UKGgGR0Byo76j3225aAdL12gIR0CmssMH8jzJdX2UKGgGR0BwqOeUY8+zaAdL4WgIR0CmsvjOcDr7dX2UKGgGR0BvADnzQNTcaAdL1mgIR0Cmsv+8f3evdX2UKGgGR0By8XNbC79RaAdL2GgIR0CmswmWUr08dX2UKGgGR0BxjkfLcKw7aAdLuGgIR0CmszBxHXmOdX2UKGgGR0BxW/vLHMlkaAdLxmgIR0Cms3F7+kxidX2UKGgGR0BwnZEPUaybaAdL3WgIR0Cms3rowEhadX2UKGgGR0Bw67jJdSl4aAdNswFoCEdAprOWKqGUOnV9lChoBkdAcxu+qioKlmgHS9JoCEdAprPAosqaw3V9lChoBkdAcv7k56t1ZGgHS9RoCEdAprPNTBInSnV9lChoBkdAba4STyJ9A2gHS9xoCEdAprQK7GvOhXV9lChoBkdAb8C0Re1KG2gHS9RoCEdAprQ9QdjoZHV9lChoBkdAc7GTZQHiWGgHS9doCEdAprRC3w1BMXV9lChoBkdAcY7By0a6z2gHS/hoCEdAprRJntfG/HV9lChoBkdAcbnAmReTmmgHS/ZoCEdAprTvUpd8iXV9lChoBkdAb81BX0XgtWgHS9ZoCEdApr7OQCCBgHV9lChoBkdAcLCFefI0ZWgHS8hoCEdApr7TP8hs7HV9lChoBkdAc758Hv+fiGgHS85oCEdApr7f4Kx9onV9lChoBkdAcf6gxJul42gHS9loCEdApr81sSCe3HV9lChoBkdAcdJ6tT1kD2gHS/FoCEdApr9Pb7CSBHV9lChoBkdAc5THc1wYL2gHS9FoCEdApr9b7EYO2HV9lChoBkdAcXAfLs8gZGgHS9VoCEdApr9vcJtzjnV9lChoBkdAcotFId2gWmgHS8NoCEdApr+G7Wd3CHV9lChoBkdAcfDctXgccWgHS9poCEdApr+Vu+AVf3V9lChoBkdAc0ayRjjJdWgHS9RoCEdApr+rcqOLi3V9lChoBkdAcAk3irDIimgHS9RoCEdApsAgHgP3BnV9lChoBkdAc0uD3/Pw/mgHS9NoCEdApsAn8uSOinV9lChoBkdAcbkTYdyT6mgHS/doCEdApsBX557gKnV9lChoBkdAcSgGFSKm9GgHS+toCEdApsBq+WWyDHV9lChoBkdAcT7JKaoddWgHS9NoCEdApsDRNO/L1XV9lChoBkdAcz3Hfdhy82gHS9FoCEdApsFLgydnTXV9lChoBkdAcnHhH9WIXWgHS9doCEdApsFk+zMRpXV9lChoBkdAcNsVBUrCnGgHS8VoCEdApsGISOBDonV9lChoBkdAccv37DVH4GgHS81oCEdApsHAgxJumHV9lChoBkdAcvGAhStNjGgHS9VoCEdApsHm/pMYdnV9lChoBkdAcMoRNATqS2gHS+1oCEdApsJP5JsfrHV9lChoBkdAcqTRJmNBGGgHS+FoCEdApsJUygwoLHV9lChoBkdAcRAmp2ll9WgHS+RoCEdApsJ4BLf1pXV9lChoBkdAbbWFMZgogGgHS/RoCEdApsJ/I6r/83V9lChoBkdAcXfyZa3ZwmgHS9VoCEdApsLFwFTvRnV9lChoBkdAcgLdHUc4pGgHS85oCEdApsLqS/0ulHV9lChoBkdAcry8zAN5MWgHS9NoCEdApsMOdRR/E3V9lChoBkdAcOx5FgDzRWgHS/JoCEdApsMpssQNC3V9lChoBkdAcrdTOgQHzGgHS8ZoCEdApsNUBltj1HV9lChoBkdAbcwSQHRkVmgHS89oCEdApsP8Of/WD3V9lChoBkdAcYq+otL+P2gHS+hoCEdApsQ4g3cYZXV9lChoBkdAcgn8r7O3UmgHS+FoCEdApsRggxJumHV9lChoBkdAbylLhaTwD2gHS9BoCEdApsSDm6oVEnV9lChoBkdAcpUXoTwlSmgHS+hoCEdApsSodELH/HV9lChoBkdAbTCQGwA2h2gHS9BoCEdApsTmKGcnV3V9lChoBkdAcEEVHFxXGWgHS8VoCEdApsTsH2RJVnV9lChoBkdAcJxR7Z39rGgHTVEDaAhHQKbFHUd7v5R1fZQoaAZHQHDedTUAks1oB0vaaAhHQKbFNnQID5l1fZQoaAZHQHHKOVcD8tRoB0v7aAhHQKbFc1QZXMh1fZQoaAZHQHKXwiml67doB0vAaAhHQKbFdv4ubqh1fZQoaAZHQHBjcTN+so5oB0viaAhHQKbFl4+r2g51fZQoaAZHQHDs01VHWjJoB0vpaAhHQKbFzdyksSV1fZQoaAZHQHHDKAnUlRhoB0vdaAhHQKbGD8Rcu8N1fZQoaAZHQHGQsPWhAW1oB0v0aAhHQKbGKreZXuF1fZQoaAZHQHK3/cWTHKhoB0vHaAhHQKbGeVpsXSB1fZQoaAZHQHLJVoL5RCRoB0vCaAhHQKbGv/io86p1fZQoaAZHQHKHjgIhQnBoB0vZaAhHQKbG5RMN+b51fZQoaAZHQHMXlf3N9phoB0vTaAhHQKbHYu/1xsF1fZQoaAZHQHHExczImw9oB0vraAhHQKbHnZjhDPZ1fZQoaAZHQHBRFCb+cYtoB0vOaAhHQKbH97TlT3t1fZQoaAZHQHD+q+N96TpoB0vmaAhHQKbIF3bEgnt1fZQoaAZHQHJAWWdEsrdoB0vZaAhHQKbIU7LdN351fZQoaAZHQHIgV9F4LThoB0vXaAhHQKbIo4LCvX91fZQoaAZHQHF9lZ5iVjZoB0vNaAhHQKbIsE384xV1fZQoaAZHQHAlGGyon8doB0vqaAhHQKbI98WKuSx1fZQoaAZHQHKurWqcVgxoB0vbaAhHQKbJMiPhhph1fZQoaAZHQHLDQDFId2hoB0vbaAhHQKbJj95yEL91fZQoaAZHQHJXA2VE/jdoB0vUaAhHQKbJmtAcDKZ1fZQoaAZHQHDQBFEy+HtoB0vaaAhHQKbKIlKK5091fZQoaAZHQHJlkZBLPD5oB0vJaAhHQKbKgjfNzKd1fZQoaAZHQHKpbhBJI2BoB0vsaAhHQKbK+TmGM4t1fZQoaAZHQHHf/rv9cbBoB0vOaAhHQKbLKxZ+x4Z1fZQoaAZHQHEFvpdKNAFoB0viaAhHQKbLm8cMmWt1fZQoaAZHQHGbZooNNJxoB0vRaAhHQKbLuC/XXiB1fZQoaAZHQHDDoQe3hGZoB0vVaAhHQKbL8Mvysjp1fZQoaAZHQHNARrvb48FoB0vMaAhHQKbMDFKCg9N1fZQoaAZHQHKSQXQ+lj5oB00AAWgIR0CmzEEO7QLNdX2UKGgGR0BzLGU7jkuIaAdL2GgIR0CmzHm4ZuQ7dX2UKGgGR0BuAMd1dPcjaAdL6WgIR0CmzHjZtelbdX2UKGgGR0Bn3rQzDXOGaAdN6ANoCEdApsyyuhbno3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 744, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01e3f306d3e07c613e656d357e0ffbf525173a9c57ebc87a0665a65fc0722e37
3
+ size 147960
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae183b865f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae183b86680>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae183b86710>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae183b867a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ae183b86830>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ae183b868c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae183b86950>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae183b869e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ae183b86a70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae183b86b00>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae183b86b90>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae183b86c20>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ae183d1fe80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1710397820748999477,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADDur2UOJk+5jIfPlbxxr6GJtu8JincPAAAAAAAAAAAmh26u2u6tD+ISBO/1mg5PeXi1zuIcgU+AAAAAAAAAACaPye8zjf0PuPnzzyfdOC+onsgvUoMIj0AAAAAAAAAADNBBjzwIJg/QgYQPS4/C78t/Tc9iLPiPQAAAAAAAAAAbbUgvlX8Rz9VYQq+yRgWv8n5cL4Z/jE9AAAAAAAAAACACTG9heq9u95kHzz31kI85NUkPQJZKL0AAIA/AACAP+ZKA71SKuO7R/ujPJYJzTwhU029tQeqPQAAgD8AAIA/WvuyPSk4Wrp9X1w4MN47tW9RxTqionW3AACAPwAAgD8aJmw93nuMPz0m+z1VzgO/cslLPlpssD0AAAAAAAAAAObowD3bbHE/A+Tava0r5r44uik+jm+ovQAAAAAAAAAABpFcPgxslD/ynzc+QxwEv60pyz4Vm1k8AAAAAAAAAACaz548H9Deu+ByyruSpJY8reJDPeX/fL0AAIA/AACAP5qL3rx1yR4+O/dxPsohoL693Wo92+5ZPQAAAAAAAAAAmvOdvFzjrD5f8q08WcnEvlUjETy9+lm9AAAAAAAAAADzFom9rpmeuidAubkEKM60iXzOOg0M1TgAAAAAAACAP2YZOr07Q7A/e3OAvsyfmr6K4bK9X4EWvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHL4xjFyaNOMAWyUS9CMAXSUR0Cmrxgdfb9IdX2UKGgGR0Bw17enAIppaAdL4WgIR0CmrxcNx2jgdX2UKGgGR0BzBsBBAv+PaAdL1WgIR0Cmr1RJmNBGdX2UKGgGR0Byhy/ATIvKaAdL2mgIR0Cmr1iY1He8dX2UKGgGR0BxmwJMQEpzaAdL6WgIR0Cmr9XLFGXpdX2UKGgGR0BxJZCa7VawaAdL1mgIR0CmsBdi2DxtdX2UKGgGR0BxbPw9aEBbaAdL0mgIR0CmsDAWSEDhdX2UKGgGR0BxWmDWbwz+aAdL7WgIR0CmsGrY5DJEdX2UKGgGR0BuGPqgRK6GaAdL1WgIR0CmsHE2P1cudX2UKGgGR0Bx03Xf642CaAdL+mgIR0CmsIbp/wy7dX2UKGgGR0Bxra+WWyC4aAdL3GgIR0CmsKPLgXMydX2UKGgGR0ByRiQp4KQaaAdLx2gIR0CmsKfZuhsZdX2UKGgGR0Bw+4jgQ6IWaAdL32gIR0CmsPsQd0aIdX2UKGgGR0Bz3GM85jpcaAdLyGgIR0CmsQBVMmF8dX2UKGgGR0BxqFRwZOzqaAdL2WgIR0CmsWUC7sfJdX2UKGgGR0Byo76j3225aAdL12gIR0CmssMH8jzJdX2UKGgGR0BwqOeUY8+zaAdL4WgIR0CmsvjOcDr7dX2UKGgGR0BvADnzQNTcaAdL1mgIR0Cmsv+8f3evdX2UKGgGR0By8XNbC79RaAdL2GgIR0CmswmWUr08dX2UKGgGR0BxjkfLcKw7aAdLuGgIR0CmszBxHXmOdX2UKGgGR0BxW/vLHMlkaAdLxmgIR0Cms3F7+kxidX2UKGgGR0BwnZEPUaybaAdL3WgIR0Cms3rowEhadX2UKGgGR0Bw67jJdSl4aAdNswFoCEdAprOWKqGUOnV9lChoBkdAcxu+qioKlmgHS9JoCEdAprPAosqaw3V9lChoBkdAcv7k56t1ZGgHS9RoCEdAprPNTBInSnV9lChoBkdAba4STyJ9A2gHS9xoCEdAprQK7GvOhXV9lChoBkdAb8C0Re1KG2gHS9RoCEdAprQ9QdjoZHV9lChoBkdAc7GTZQHiWGgHS9doCEdAprRC3w1BMXV9lChoBkdAcY7By0a6z2gHS/hoCEdAprRJntfG/HV9lChoBkdAcbnAmReTmmgHS/ZoCEdAprTvUpd8iXV9lChoBkdAb81BX0XgtWgHS9ZoCEdApr7OQCCBgHV9lChoBkdAcLCFefI0ZWgHS8hoCEdApr7TP8hs7HV9lChoBkdAc758Hv+fiGgHS85oCEdApr7f4Kx9onV9lChoBkdAcf6gxJul42gHS9loCEdApr81sSCe3HV9lChoBkdAcdJ6tT1kD2gHS/FoCEdApr9Pb7CSBHV9lChoBkdAc5THc1wYL2gHS9FoCEdApr9b7EYO2HV9lChoBkdAcXAfLs8gZGgHS9VoCEdApr9vcJtzjnV9lChoBkdAcotFId2gWmgHS8NoCEdApr+G7Wd3CHV9lChoBkdAcfDctXgccWgHS9poCEdApr+Vu+AVf3V9lChoBkdAc0ayRjjJdWgHS9RoCEdApr+rcqOLi3V9lChoBkdAcAk3irDIimgHS9RoCEdApsAgHgP3BnV9lChoBkdAc0uD3/Pw/mgHS9NoCEdApsAn8uSOinV9lChoBkdAcbkTYdyT6mgHS/doCEdApsBX557gKnV9lChoBkdAcSgGFSKm9GgHS+toCEdApsBq+WWyDHV9lChoBkdAcT7JKaoddWgHS9NoCEdApsDRNO/L1XV9lChoBkdAcz3Hfdhy82gHS9FoCEdApsFLgydnTXV9lChoBkdAcnHhH9WIXWgHS9doCEdApsFk+zMRpXV9lChoBkdAcNsVBUrCnGgHS8VoCEdApsGISOBDonV9lChoBkdAccv37DVH4GgHS81oCEdApsHAgxJumHV9lChoBkdAcvGAhStNjGgHS9VoCEdApsHm/pMYdnV9lChoBkdAcMoRNATqS2gHS+1oCEdApsJP5JsfrHV9lChoBkdAcqTRJmNBGGgHS+FoCEdApsJUygwoLHV9lChoBkdAcRAmp2ll9WgHS+RoCEdApsJ4BLf1pXV9lChoBkdAbbWFMZgogGgHS/RoCEdApsJ/I6r/83V9lChoBkdAcXfyZa3ZwmgHS9VoCEdApsLFwFTvRnV9lChoBkdAcgLdHUc4pGgHS85oCEdApsLqS/0ulHV9lChoBkdAcry8zAN5MWgHS9NoCEdApsMOdRR/E3V9lChoBkdAcOx5FgDzRWgHS/JoCEdApsMpssQNC3V9lChoBkdAcrdTOgQHzGgHS8ZoCEdApsNUBltj1HV9lChoBkdAbcwSQHRkVmgHS89oCEdApsP8Of/WD3V9lChoBkdAcYq+otL+P2gHS+hoCEdApsQ4g3cYZXV9lChoBkdAcgn8r7O3UmgHS+FoCEdApsRggxJumHV9lChoBkdAbylLhaTwD2gHS9BoCEdApsSDm6oVEnV9lChoBkdAcpUXoTwlSmgHS+hoCEdApsSodELH/HV9lChoBkdAbTCQGwA2h2gHS9BoCEdApsTmKGcnV3V9lChoBkdAcEEVHFxXGWgHS8VoCEdApsTsH2RJVnV9lChoBkdAcJxR7Z39rGgHTVEDaAhHQKbFHUd7v5R1fZQoaAZHQHDedTUAks1oB0vaaAhHQKbFNnQID5l1fZQoaAZHQHHKOVcD8tRoB0v7aAhHQKbFc1QZXMh1fZQoaAZHQHKXwiml67doB0vAaAhHQKbFdv4ubqh1fZQoaAZHQHBjcTN+so5oB0viaAhHQKbFl4+r2g51fZQoaAZHQHDs01VHWjJoB0vpaAhHQKbFzdyksSV1fZQoaAZHQHHDKAnUlRhoB0vdaAhHQKbGD8Rcu8N1fZQoaAZHQHGQsPWhAW1oB0v0aAhHQKbGKreZXuF1fZQoaAZHQHK3/cWTHKhoB0vHaAhHQKbGeVpsXSB1fZQoaAZHQHLJVoL5RCRoB0vCaAhHQKbGv/io86p1fZQoaAZHQHKHjgIhQnBoB0vZaAhHQKbG5RMN+b51fZQoaAZHQHMXlf3N9phoB0vTaAhHQKbHYu/1xsF1fZQoaAZHQHHExczImw9oB0vraAhHQKbHnZjhDPZ1fZQoaAZHQHBRFCb+cYtoB0vOaAhHQKbH97TlT3t1fZQoaAZHQHD+q+N96TpoB0vmaAhHQKbIF3bEgnt1fZQoaAZHQHJAWWdEsrdoB0vZaAhHQKbIU7LdN351fZQoaAZHQHIgV9F4LThoB0vXaAhHQKbIo4LCvX91fZQoaAZHQHF9lZ5iVjZoB0vNaAhHQKbIsE384xV1fZQoaAZHQHAlGGyon8doB0vqaAhHQKbI98WKuSx1fZQoaAZHQHKurWqcVgxoB0vbaAhHQKbJMiPhhph1fZQoaAZHQHLDQDFId2hoB0vbaAhHQKbJj95yEL91fZQoaAZHQHJXA2VE/jdoB0vUaAhHQKbJmtAcDKZ1fZQoaAZHQHDQBFEy+HtoB0vaaAhHQKbKIlKK5091fZQoaAZHQHJlkZBLPD5oB0vJaAhHQKbKgjfNzKd1fZQoaAZHQHKpbhBJI2BoB0vsaAhHQKbK+TmGM4t1fZQoaAZHQHHf/rv9cbBoB0vOaAhHQKbLKxZ+x4Z1fZQoaAZHQHEFvpdKNAFoB0viaAhHQKbLm8cMmWt1fZQoaAZHQHGbZooNNJxoB0vRaAhHQKbLuC/XXiB1fZQoaAZHQHDDoQe3hGZoB0vVaAhHQKbL8Mvysjp1fZQoaAZHQHNARrvb48FoB0vMaAhHQKbMDFKCg9N1fZQoaAZHQHKSQXQ+lj5oB00AAWgIR0CmzEEO7QLNdX2UKGgGR0BzLGU7jkuIaAdL2GgIR0CmzHm4ZuQ7dX2UKGgGR0BuAMd1dPcjaAdL6WgIR0CmzHjZtelbdX2UKGgGR0Bn3rQzDXOGaAdN6ANoCEdApsyyuhbno3VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 744,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec4641a06fc31b135ea4eb752e5121e7a67cf60d8c59cc9c7a7dbdd6baadeac1
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2747d077068050ab2acca85cf9795d5652cc8ff3f970e2119efc2940b308dcf
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (160 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 275.1022162385481, "std_reward": 21.65780219403523, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-14T06:49:48.243689"}