marcoCasamento commited on
Commit
6e3806b
·
verified ·
1 Parent(s): 64388e8

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.0554
21
+ - Answer: {'precision': 0.4105691056910569, 'recall': 0.49938195302843014, 'f1': 0.45064138315672064, 'number': 809}
22
+ - Header: {'precision': 0.36470588235294116, 'recall': 0.2605042016806723, 'f1': 0.30392156862745096, 'number': 119}
23
+ - Question: {'precision': 0.48371104815864024, 'recall': 0.6413145539906103, 'f1': 0.551473556721841, 'number': 1065}
24
+ - Overall Precision: 0.4506
25
+ - Overall Recall: 0.5610
26
+ - Overall F1: 0.4998
27
+ - Overall Accuracy: 0.6149
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.7702 | 1.0 | 10 | 1.5768 | {'precision': 0.040923399790136414, 'recall': 0.048207663782447466, 'f1': 0.04426787741203178, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.38510301109350237, 'recall': 0.22816901408450704, 'f1': 0.28655660377358494, 'number': 1065} | 0.1780 | 0.1415 | 0.1577 | 0.3540 |
60
+ | 1.4963 | 2.0 | 20 | 1.4062 | {'precision': 0.1941294196130754, 'recall': 0.35970333745364647, 'f1': 0.2521663778162912, 'number': 809} | {'precision': 0.03571428571428571, 'recall': 0.01680672268907563, 'f1': 0.022857142857142857, 'number': 119} | {'precision': 0.28505291005291006, 'recall': 0.40469483568075115, 'f1': 0.33449747768723326, 'number': 1065} | 0.2361 | 0.3633 | 0.2862 | 0.4204 |
61
+ | 1.2983 | 3.0 | 30 | 1.2020 | {'precision': 0.23365122615803816, 'recall': 0.42398022249690975, 'f1': 0.3012736056214317, 'number': 809} | {'precision': 0.13846153846153847, 'recall': 0.07563025210084033, 'f1': 0.09782608695652173, 'number': 119} | {'precision': 0.3307776560788609, 'recall': 0.5671361502347417, 'f1': 0.4178484953303355, 'number': 1065} | 0.2846 | 0.4797 | 0.3572 | 0.4806 |
62
+ | 1.1603 | 4.0 | 40 | 1.1227 | {'precision': 0.2243436754176611, 'recall': 0.34857849196538937, 'f1': 0.2729912875121007, 'number': 809} | {'precision': 0.2222222222222222, 'recall': 0.18487394957983194, 'f1': 0.2018348623853211, 'number': 119} | {'precision': 0.35071846726982436, 'recall': 0.6187793427230047, 'f1': 0.4476902173913044, 'number': 1065} | 0.2977 | 0.4832 | 0.3684 | 0.5265 |
63
+ | 1.0771 | 5.0 | 50 | 1.0953 | {'precision': 0.2655198204936425, 'recall': 0.4388133498145859, 'f1': 0.33084808946877914, 'number': 809} | {'precision': 0.26666666666666666, 'recall': 0.20168067226890757, 'f1': 0.22966507177033493, 'number': 119} | {'precision': 0.3632745878339966, 'recall': 0.6, 'f1': 0.45254957507082155, 'number': 1065} | 0.3195 | 0.5108 | 0.3931 | 0.5453 |
64
+ | 1.0102 | 6.0 | 60 | 1.0388 | {'precision': 0.30492285084496695, 'recall': 0.5129789864029666, 'f1': 0.3824884792626728, 'number': 809} | {'precision': 0.3283582089552239, 'recall': 0.18487394957983194, 'f1': 0.2365591397849462, 'number': 119} | {'precision': 0.4519543973941368, 'recall': 0.5211267605633803, 'f1': 0.4840819886611426, 'number': 1065} | 0.3735 | 0.4977 | 0.4268 | 0.5839 |
65
+ | 0.9312 | 7.0 | 70 | 1.0265 | {'precision': 0.32556131260794474, 'recall': 0.46600741656365885, 'f1': 0.3833248601931876, 'number': 809} | {'precision': 0.2828282828282828, 'recall': 0.23529411764705882, 'f1': 0.25688073394495414, 'number': 119} | {'precision': 0.47326007326007324, 'recall': 0.6065727699530516, 'f1': 0.5316872427983539, 'number': 1065} | 0.4008 | 0.5273 | 0.4555 | 0.5969 |
66
+ | 0.8732 | 8.0 | 80 | 1.0508 | {'precision': 0.33681073025335323, 'recall': 0.5587144622991347, 'f1': 0.4202696420269642, 'number': 809} | {'precision': 0.3561643835616438, 'recall': 0.2184873949579832, 'f1': 0.2708333333333333, 'number': 119} | {'precision': 0.4556126192223037, 'recall': 0.5830985915492958, 'f1': 0.5115321252059308, 'number': 1065} | 0.3956 | 0.5514 | 0.4607 | 0.5947 |
67
+ | 0.808 | 9.0 | 90 | 1.0282 | {'precision': 0.36807511737089205, 'recall': 0.484548825710754, 'f1': 0.41835645677694777, 'number': 809} | {'precision': 0.3058823529411765, 'recall': 0.2184873949579832, 'f1': 0.2549019607843137, 'number': 119} | {'precision': 0.46965317919075145, 'recall': 0.6103286384976526, 'f1': 0.5308289097590853, 'number': 1065} | 0.4215 | 0.5359 | 0.4718 | 0.6085 |
68
+ | 0.7928 | 10.0 | 100 | 1.0475 | {'precision': 0.38683498647430115, 'recall': 0.5302843016069221, 'f1': 0.44734098018769547, 'number': 809} | {'precision': 0.36363636363636365, 'recall': 0.23529411764705882, 'f1': 0.2857142857142857, 'number': 119} | {'precision': 0.49149922720247297, 'recall': 0.5971830985915493, 'f1': 0.5392115303094531, 'number': 1065} | 0.4407 | 0.5484 | 0.4887 | 0.6054 |
69
+ | 0.7164 | 11.0 | 110 | 1.0310 | {'precision': 0.38894472361809046, 'recall': 0.4783683559950556, 'f1': 0.4290465631929047, 'number': 809} | {'precision': 0.38961038961038963, 'recall': 0.25210084033613445, 'f1': 0.30612244897959184, 'number': 119} | {'precision': 0.4831223628691983, 'recall': 0.6450704225352113, 'f1': 0.5524728588661038, 'number': 1065} | 0.4427 | 0.5539 | 0.4921 | 0.6149 |
70
+ | 0.707 | 12.0 | 120 | 1.0295 | {'precision': 0.40441176470588236, 'recall': 0.4758961681087763, 'f1': 0.43725156161272005, 'number': 809} | {'precision': 0.3655913978494624, 'recall': 0.2857142857142857, 'f1': 0.32075471698113206, 'number': 119} | {'precision': 0.4713031735313977, 'recall': 0.6553990610328638, 'f1': 0.5483110761979575, 'number': 1065} | 0.4422 | 0.5605 | 0.4944 | 0.6172 |
71
+ | 0.6765 | 13.0 | 130 | 1.0494 | {'precision': 0.4107485604606526, 'recall': 0.5290482076637825, 'f1': 0.46245272825499734, 'number': 809} | {'precision': 0.4305555555555556, 'recall': 0.2605042016806723, 'f1': 0.324607329842932, 'number': 119} | {'precision': 0.4879825200291333, 'recall': 0.6291079812206573, 'f1': 0.5496308449548811, 'number': 1065} | 0.4540 | 0.5665 | 0.5040 | 0.6156 |
72
+ | 0.6489 | 14.0 | 140 | 1.0557 | {'precision': 0.4165009940357853, 'recall': 0.5179233621755254, 'f1': 0.4617079889807163, 'number': 809} | {'precision': 0.4, 'recall': 0.2689075630252101, 'f1': 0.32160804020100503, 'number': 119} | {'precision': 0.4891304347826087, 'recall': 0.6338028169014085, 'f1': 0.5521472392638037, 'number': 1065} | 0.4566 | 0.5650 | 0.5050 | 0.6142 |
73
+ | 0.6397 | 15.0 | 150 | 1.0554 | {'precision': 0.4105691056910569, 'recall': 0.49938195302843014, 'f1': 0.45064138315672064, 'number': 809} | {'precision': 0.36470588235294116, 'recall': 0.2605042016806723, 'f1': 0.30392156862745096, 'number': 119} | {'precision': 0.48371104815864024, 'recall': 0.6413145539906103, 'f1': 0.551473556721841, 'number': 1065} | 0.4506 | 0.5610 | 0.4998 | 0.6149 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.38.2
79
+ - Pytorch 2.2.1+cu121
80
+ - Datasets 2.18.0
81
+ - Tokenizers 0.15.2
logs/events.out.tfevents.1712841890.90d122649371.3714.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:10339b8182853a63f73ce9b786a0013d7a536ddef0c5b59b5b04ad228fc6dc8c
3
- size 13954
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f72555491522d4f791bb8101103326c531ff05895cfc113bb398cd0691dd574e
3
+ size 15738
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d2ca9c12af40f1a5723b68e3e9417990e0e86895cb49d13cc59a7d957c3ebbd4
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac859c177696aeecbaea07e47159cab740ee378589c0474f201fce6cfc79bcb8
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff