manuelmaiorano commited on
Commit
99f0c34
·
1 Parent(s): 8f3e3e4

Initial commit

Browse files
PPO-PandaPickAndPlaceDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c5f2d81e435fc5d988f09f9996980643b94a07f52a91ef5556ae98ccff9dff0
3
+ size 3374283
PPO-PandaPickAndPlaceDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
PPO-PandaPickAndPlaceDense-v2/data ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8e98cc5550>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f8e98cc4b40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ "net_arch": [
14
+ 256,
15
+ 256,
16
+ 256
17
+ ]
18
+ },
19
+ "num_timesteps": 155648,
20
+ "_total_timesteps": 150000,
21
+ "_num_timesteps_at_start": 0,
22
+ "seed": null,
23
+ "action_noise": null,
24
+ "start_time": 1681734520757957507,
25
+ "learning_rate": 0.0003,
26
+ "tensorboard_log": null,
27
+ "lr_schedule": {
28
+ ":type:": "<class 'function'>",
29
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
30
+ },
31
+ "_last_obs": {
32
+ ":type:": "<class 'collections.OrderedDict'>",
33
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3Vqov/sK7b6mz8U9XB+Sv6eYhr9SzsU9li2xv8uaor+fysU9HvgjP7Qo4j6mz8U9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIGqwPxogJb9kfYS/W+LXvypO5z4CDIK+HkGlvaFE1D8+9BA+UaaPv1rVAL5kfYS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAKWdM+r+MGP0FFtT+df5a+S7fSPyPzJb8TzGI/3Vqov/sK7b6mz8U9nd7lvLpuZ7yIYnI7n/+wPJ4DMbz+QkM9cZN+uyW2obzwY8q7PcgkPz9UoD52hzm/Ki/sPmRjor8i/KM/y9dsv1wfkr+nmIa/Us7FPRZV57z3WWa82y+GO4OktTwn2TS86DNEPcdii7rVN5O8yCDAu26Jij+PLiM/UCFVv7K1xj5Jm4I/BW3cPWoE8z6WLbG/y5qiv5/KxT3x5ua8Wl5jvGcJWzuVtrM8/Ak8vOgzRD12Y4u63jeTvDr6z7tafWM+AGlqv0h3Yj74/oq/xXeuv8+dvr6tkZK/HvgjP7Qo4j6mz8U9nd7lvLpuZ7yIYnI7n/+wPJ4DMbz+QkM9cZN+uyW2obzwY8q7lGgOSwRLE4aUaBJ0lFKUdS4=",
34
+ "achieved_goal": "[[-1.3152729 -0.4629744 0.09658746]\n [-1.141582 -1.0515336 0.09658493]\n [-1.3842037 -1.2703489 0.09657788]\n [ 0.6405047 0.4417168 0.09658746]]",
35
+ "desired_goal": "[[ 1.3782387 -0.6450211 -1.0350766 ]\n [-1.6865953 0.45176822 -0.25399786]\n [-0.08069061 1.6583444 0.14155671]\n [-1.1222631 -0.12581387 -1.0350766 ]]",
36
+ "observation": "[[ 4.1278869e-01 5.2691168e-01 1.4161760e+00 -2.9394236e-01\n 1.6462187e+00 -6.4824122e-01 8.8592643e-01 -1.3152729e+00\n -4.6297440e-01 9.6587464e-02 -2.8060252e-02 -1.4125520e-02\n 3.6984999e-03 2.1606265e-02 -1.0804085e-02 4.7671311e-02\n -3.8845206e-03 -1.9740174e-02 -6.1764643e-03]\n [ 6.4368039e-01 3.1314275e-01 -7.2472322e-01 4.6129733e-01\n -1.2686582e+00 1.2811320e+00 -9.2516774e-01 -1.1415820e+00\n -1.0515336e+00 9.6584931e-02 -2.8238814e-02 -1.4059535e-02\n 4.0950603e-03 2.2173172e-02 -1.1038101e-02 4.7901064e-02\n -1.0634296e-03 -1.7970959e-02 -5.8632828e-03]\n [ 1.0823190e+00 6.3742918e-01 -8.3253956e-01 3.8810498e-01\n 1.0203639e+00 1.0762981e-01 4.7464305e-01 -1.3842037e+00\n -1.2703489e+00 9.6577875e-02 -2.8186293e-02 -1.3877476e-02\n 3.3422352e-03 2.1937648e-02 -1.1476990e-02 4.7901064e-02\n -1.0634500e-03 -1.7970975e-02 -6.3469680e-03]\n [ 2.2215787e-01 -9.1566467e-01 2.2115815e-01 -1.0859060e+00\n -1.3630301e+00 -3.7229773e-01 -1.1450707e+00 6.4050472e-01\n 4.4171679e-01 9.6587464e-02 -2.8060252e-02 -1.4125520e-02\n 3.6984999e-03 2.1606265e-02 -1.0804085e-02 4.7671311e-02\n -3.8845206e-03 -1.9740174e-02 -6.1764643e-03]]"
37
+ },
38
+ "_last_episode_starts": {
39
+ ":type:": "<class 'numpy.ndarray'>",
40
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
41
+ },
42
+ "_last_original_obs": {
43
+ ":type:": "<class 'collections.OrderedDict'>",
44
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAogZ0PIy7zrsK16M8ANMVvl942DwK16M8tQflvWVpEb0K16M8HlvavGRo+zwK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4LQCPjiDUDyr1kI+L53MPY1oKDwK16M8xLLPvdSeFT4hHRc+NMq5vczXs7u9CuI8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAogZ0PIy7zrsK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAADTFb5feNg8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAC1B+W9ZWkRvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAHlvavGRo+zwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
45
+ "achieved_goal": "[[ 0.01489416 -0.00630898 0.02 ]\n [-0.14631271 0.02642458 0.02 ]\n [-0.11183111 -0.0355009 0.02 ]\n [-0.02665478 0.03068943 0.02 ]]",
46
+ "desired_goal": "[[ 0.12764311 0.0127266 0.19027202]\n [ 0.09990918 0.01027883 0.02 ]\n [-0.10141519 0.1461137 0.14757206]\n [-0.0907177 -0.00548837 0.02759301]]",
47
+ "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.48941595e-02\n -6.30897842e-03 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.46312714e-01\n 2.64245849e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.11831106e-01\n -3.55009027e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -2.66547762e-02\n 3.06894258e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"
48
+ },
49
+ "_episode_num": 0,
50
+ "use_sde": false,
51
+ "sde_sample_freq": -1,
52
+ "_current_progress_remaining": -0.037653333333333316,
53
+ "_stats_window_size": 100,
54
+ "ep_info_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIayxhbYyVIMCUhpRSlIwBbJRLMowBdJRHQIF2/9itq591fZQoaAZoCWgPQwgczvxqDlguwJSGlFKUaBVLMmgWR0CBdhZ5AyEddX2UKGgGaAloD0MIklhS7j7nEcCUhpRSlGgVSzJoFkdAgXVEsjFAFHV9lChoBmgJaA9DCKZFfZI7LCnAlIaUUpRoFUsyaBZHQIF0bLjghr51fZQoaAZoCWgPQwgwLeqT3FErwJSGlFKUaBVLMmgWR0CBewOoYNy6dX2UKGgGaAloD0MIRkJbzqW4FsCUhpRSlGgVSzJoFkdAgXobdadMCnV9lChoBmgJaA9DCCJxj6UPjRXAlIaUUpRoFUsyaBZHQIF5SxzJZGN1fZQoaAZoCWgPQwh7EW3H1I0WwJSGlFKUaBVLMmgWR0CBeHQZ4wAVdX2UKGgGaAloD0MIHOp3YWsGIcCUhpRSlGgVSzJoFkdAgX7RW912aHV9lChoBmgJaA9DCMGRQINNrRbAlIaUUpRoFUsyaBZHQIF96ZQYUFl1fZQoaAZoCWgPQwhl/PuMC4cKwJSGlFKUaBVLMmgWR0CBfRkp7TlUdX2UKGgGaAloD0MIDqK1os05JcCUhpRSlGgVSzJoFkdAgXxBsImgJ3V9lChoBmgJaA9DCLiSHRuB+BTAlIaUUpRoFUsyaBZHQIGCpRQ79yd1fZQoaAZoCWgPQwjytPzAVT4hwJSGlFKUaBVLMmgWR0CBgbxrBTGYdX2UKGgGaAloD0MIOnR63o0FDcCUhpRSlGgVSzJoFkdAgYDrgn+hoXV9lChoBmgJaA9DCKq53GCoIybAlIaUUpRoFUsyaBZHQIGAFCmdiDx1fZQoaAZoCWgPQwg1t0JYjaUuwJSGlFKUaBVLMmgWR0CBhoJa7mMgdX2UKGgGaAloD0MIhqqYSj+hFsCUhpRSlGgVSzJoFkdAgYWZhScbznV9lChoBmgJaA9DCDiCVIodrRnAlIaUUpRoFUsyaBZHQIGEx6v7m+11fZQoaAZoCWgPQwhsPUM4ZqkkwJSGlFKUaBVLMmgWR0CBg/B7/n4gdX2UKGgGaAloD0MIhSLdzyn4IcCUhpRSlGgVSzJoFkdAgYpbJ4jbBXV9lChoBmgJaA9DCNIcWfllQBbAlIaUUpRoFUsyaBZHQIGJcc0cfeV1fZQoaAZoCWgPQwiiXYWUn0QrwJSGlFKUaBVLMmgWR0CBiKDjin50dX2UKGgGaAloD0MIIt+l1CXLKcCUhpRSlGgVSzJoFkdAgYfJtaY/mnV9lChoBmgJaA9DCCOimLwB/ijAlIaUUpRoFUsyaBZHQIGOyhWYF7l1fZQoaAZoCWgPQwhQpzy6EXYRwJSGlFKUaBVLMmgWR0CBjeTxG2CvdX2UKGgGaAloD0MItXBZhc3YJcCUhpRSlGgVSzJoFkdAgY0WgvlEJHV9lChoBmgJaA9DCCFzZVBtmC3AlIaUUpRoFUsyaBZHQIGMQbGWD6F1fZQoaAZoCWgPQwioABjPoBkgwJSGlFKUaBVLMmgWR0CBlPjwQUYbdX2UKGgGaAloD0MIYoOFkzQfHcCUhpRSlGgVSzJoFkdAgZQT5GjKxXV9lChoBmgJaA9DCGzM64hDTirAlIaUUpRoFUsyaBZHQIGTRUxVQyh1fZQoaAZoCWgPQwjVIMztXp4twJSGlFKUaBVLMmgWR0CBknDiwSrYdX2UKGgGaAloD0MIwa27eaqjKMCUhpRSlGgVSzJoFkdAgZuTLGJemnV9lChoBmgJaA9DCHKkMzDyciPAlIaUUpRoFUsyaBZHQIGarHGS6lN1fZQoaAZoCWgPQwggXtcv2BkxwJSGlFKUaBVLMmgWR0CBmd2IO6NEdX2UKGgGaAloD0MIbCbfbHPrIsCUhpRSlGgVSzJoFkdAgZkMOoYNzHV9lChoBmgJaA9DCLlUpS2uCS3AlIaUUpRoFUsyaBZHQIGierfcesB1fZQoaAZoCWgPQwgktOVcivsdwJSGlFKUaBVLMmgWR0CBoZcclw98dX2UKGgGaAloD0MINum2RC5oI8CUhpRSlGgVSzJoFkdAgaDJyIYWL3V9lChoBmgJaA9DCCkg7X+AlSjAlIaUUpRoFUsyaBZHQIGf9z+3pfR1fZQoaAZoCWgPQwjG4GHaNwcYwJSGlFKUaBVLMmgWR0CBqRsMy8BddX2UKGgGaAloD0MIgSBAho4NIsCUhpRSlGgVSzJoFkdAgag0nPVurXV9lChoBmgJaA9DCPsEUIwsWQfAlIaUUpRoFUsyaBZHQIGnZvP1L8J1fZQoaAZoCWgPQwiscMtHUuIlwJSGlFKUaBVLMmgWR0CBppMLWqcWdX2UKGgGaAloD0MIXb9gN2zzIMCUhpRSlGgVSzJoFkdAga/luejEenV9lChoBmgJaA9DCFZFuMmoaizAlIaUUpRoFUsyaBZHQIGvAEnssxx1fZQoaAZoCWgPQwin5nKDoQYpwJSGlFKUaBVLMmgWR0CBrjIsiB5HdX2UKGgGaAloD0MICXHl7J0BGcCUhpRSlGgVSzJoFkdAga1fOdGy5nV9lChoBmgJaA9DCDT1ukVgLCTAlIaUUpRoFUsyaBZHQIG2EERradt1fZQoaAZoCWgPQwgNOEvJckovwJSGlFKUaBVLMmgWR0CBtSdoWYWtdX2UKGgGaAloD0MIZmZmZmb2KsCUhpRSlGgVSzJoFkdAgbRWCdz4lHV9lChoBmgJaA9DCEbtfhXg4ynAlIaUUpRoFUsyaBZHQIGzfpW3jMp1fZQoaAZoCWgPQwh1AS8zbLQawJSGlFKUaBVLMmgWR0CBui20AtFsdX2UKGgGaAloD0MI001iEFhZEMCUhpRSlGgVSzJoFkdAgblFrM1TBXV9lChoBmgJaA9DCNNmnIaoMhPAlIaUUpRoFUsyaBZHQIG4c61b7j11fZQoaAZoCWgPQwig3SHFAJkmwJSGlFKUaBVLMmgWR0CBt5wG4ZuRdX2UKGgGaAloD0MIwjV39L+UJMCUhpRSlGgVSzJoFkdAgb5Awwj+rHV9lChoBmgJaA9DCA8KStHKBSLAlIaUUpRoFUsyaBZHQIG9V5KODJ51fZQoaAZoCWgPQwg+l6lJ8OYdwJSGlFKUaBVLMmgWR0CBvIYekpI+dX2UKGgGaAloD0MIvALRkzKhJ8CUhpRSlGgVSzJoFkdAgbuubZvkzXV9lChoBmgJaA9DCF980R4vTCTAlIaUUpRoFUsyaBZHQIHCLZHuqm11fZQoaAZoCWgPQwiTVnxD4RMewJSGlFKUaBVLMmgWR0CBwUVTJhfCdX2UKGgGaAloD0MI+cCO/wIZLMCUhpRSlGgVSzJoFkdAgcBzVMEidXV9lChoBmgJaA9DCMsuGFxzJybAlIaUUpRoFUsyaBZHQIG/nEn9ehR1fZQoaAZoCWgPQwi0HVN3ZTchwJSGlFKUaBVLMmgWR0CBxfVhCtzTdX2UKGgGaAloD0MIumWH+Ie9HMCUhpRSlGgVSzJoFkdAgcUNVzZHu3V9lChoBmgJaA9DCOvDeqNW4CfAlIaUUpRoFUsyaBZHQIHEPLNfPX11fZQoaAZoCWgPQwhpGhTNAwghwJSGlFKUaBVLMmgWR0CBw2VuaWondX2UKGgGaAloD0MI6iEa3UE8L8CUhpRSlGgVSzJoFkdAgcmwI2OyV3V9lChoBmgJaA9DCEZEMXkDfCXAlIaUUpRoFUsyaBZHQIHIxwIdELJ1fZQoaAZoCWgPQwiNQpJZvSMFwJSGlFKUaBVLMmgWR0CBx/V3ljmTdX2UKGgGaAloD0MIRrQdU3dtM8CUhpRSlGgVSzJoFkdAgccemm+Cb3V9lChoBmgJaA9DCBHhXwSNASHAlIaUUpRoFUsyaBZHQIHNoDs+mnB1fZQoaAZoCWgPQwgCRSxi2MEMwJSGlFKUaBVLMmgWR0CBzLdeIEbHdX2UKGgGaAloD0MIAVEwYwpuI8CUhpRSlGgVSzJoFkdAgcvn3lCCz3V9lChoBmgJaA9DCH7gKk8gZCnAlIaUUpRoFUsyaBZHQIHLEJv5xip1fZQoaAZoCWgPQwjdmQmGc834v5SGlFKUaBVLMmgWR0CB0W2jwhGIdX2UKGgGaAloD0MIJVryeFr+57+UhpRSlGgVSzJoFkdAgdCE7GNrCXV9lChoBmgJaA9DCKKyYU1lYSfAlIaUUpRoFUsyaBZHQIHPsyP+4sp1fZQoaAZoCWgPQwhj1SDM7aYkwJSGlFKUaBVLMmgWR0CBztvm5lOHdX2UKGgGaAloD0MI+KkqNBB7EcCUhpRSlGgVSzJoFkdAgdVLfk3juXV9lChoBmgJaA9DCH4BvXDnOiTAlIaUUpRoFUsyaBZHQIHUYzi0fHR1fZQoaAZoCWgPQwg6AyMva7oiwJSGlFKUaBVLMmgWR0CB05IcR15jdX2UKGgGaAloD0MIUirhCb0OKMCUhpRSlGgVSzJoFkdAgdK6hpQDWHV9lChoBmgJaA9DCH/fv3lx6irAlIaUUpRoFUsyaBZHQIHY9g4Otnx1fZQoaAZoCWgPQwiIY13cRisiwJSGlFKUaBVLMmgWR0CB2A2F36hydX2UKGgGaAloD0MISyAldm0fJsCUhpRSlGgVSzJoFkdAgdc7aZhKDnV9lChoBmgJaA9DCE4qGmt/pwzAlIaUUpRoFUsyaBZHQIHWZEfDDTB1fZQoaAZoCWgPQwgfMA+Z8iklwJSGlFKUaBVLMmgWR0CB3RSWqtHQdX2UKGgGaAloD0MIOQ1RhT8zIMCUhpRSlGgVSzJoFkdAgdwyO7xusXV9lChoBmgJaA9DCEhPkUPExSrAlIaUUpRoFUsyaBZHQIHbYFeOXE91fZQoaAZoCWgPQwgJF/IIbhwiwJSGlFKUaBVLMmgWR0CB2ohLXcxkdX2UKGgGaAloD0MIa32R0JZzCsCUhpRSlGgVSzJoFkdAgeEPf8/D+HV9lChoBmgJaA9DCM+6RsuBNiTAlIaUUpRoFUsyaBZHQIHgJ5C4SYh1fZQoaAZoCWgPQwjCFyZTBcMWwJSGlFKUaBVLMmgWR0CB31ZrYXfqdX2UKGgGaAloD0MIINPaNLbPL8CUhpRSlGgVSzJoFkdAgd5/oaDPGHV9lChoBmgJaA9DCLKbGf1oeB/AlIaUUpRoFUsyaBZHQIHlAB7u2JB1fZQoaAZoCWgPQwjNctnonAciwJSGlFKUaBVLMmgWR0CB5BelbeMydX2UKGgGaAloD0MIEf+wpUcDI8CUhpRSlGgVSzJoFkdAgeNHDBMzuXV9lChoBmgJaA9DCCjVPh2PWRjAlIaUUpRoFUsyaBZHQIHicCvHLid1ZS4="
57
+ },
58
+ "ep_success_buffer": {
59
+ ":type:": "<class 'collections.deque'>",
60
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
61
+ },
62
+ "_n_updates": 190,
63
+ "n_steps": 2048,
64
+ "gamma": 0.95,
65
+ "gae_lambda": 0.95,
66
+ "ent_coef": 0.0,
67
+ "vf_coef": 0.5,
68
+ "max_grad_norm": 0.5,
69
+ "batch_size": 64,
70
+ "n_epochs": 10,
71
+ "clip_range": {
72
+ ":type:": "<class 'function'>",
73
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
74
+ },
75
+ "clip_range_vf": null,
76
+ "normalize_advantage": true,
77
+ "target_kl": null,
78
+ "observation_space": {
79
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
80
+ ":serialized:": "gAWV1AMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLE4WUaBpoHSiWTAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBlGgVSxOFlGggdJRSlGgjaB0olkwAAAAAAAAAAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQZRoFUsThZRoIHSUUpRoKGgdKJYTAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQGUaCxLE4WUaCB0lFKUaDJoHSiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGgsSxOFlGggdJRSlGg3TnVidWgYTmgQTmg3TnViLg==",
81
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10.\n -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.\n 10.], (19,), float32))])",
82
+ "_shape": null,
83
+ "dtype": null,
84
+ "_np_random": null
85
+ },
86
+ "action_space": {
87
+ ":type:": "<class 'gym.spaces.box.Box'>",
88
+ ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
89
+ "dtype": "float32",
90
+ "_shape": [
91
+ 4
92
+ ],
93
+ "low": "[-1. -1. -1. -1.]",
94
+ "high": "[1. 1. 1. 1.]",
95
+ "bounded_below": "[ True True True True]",
96
+ "bounded_above": "[ True True True True]",
97
+ "_np_random": null
98
+ },
99
+ "n_envs": 4
100
+ }
PPO-PandaPickAndPlaceDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bf17b94f77e14b9ac052b4a5cf35ea4608ed178c42fc02b41fe4c85cf5b817b
3
+ size 2236108
PPO-PandaPickAndPlaceDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5695cb32bb5660da41b9cd5be309c60a7cdb8f7017985acd315e248fb5f63f6
3
+ size 1117426
PPO-PandaPickAndPlaceDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-PandaPickAndPlaceDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlaceDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlaceDense-v2
16
+ type: PandaPickAndPlaceDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -8.33 +/- 4.94
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **PandaPickAndPlaceDense-v2**
25
+ This is a trained model of a **PPO** agent playing **PandaPickAndPlaceDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8e98cc5550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8e98cc4b40>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256, 256]}, "num_timesteps": 155648, "_total_timesteps": 150000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681734520757957507, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3Vqov/sK7b6mz8U9XB+Sv6eYhr9SzsU9li2xv8uaor+fysU9HvgjP7Qo4j6mz8U9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIGqwPxogJb9kfYS/W+LXvypO5z4CDIK+HkGlvaFE1D8+9BA+UaaPv1rVAL5kfYS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAKWdM+r+MGP0FFtT+df5a+S7fSPyPzJb8TzGI/3Vqov/sK7b6mz8U9nd7lvLpuZ7yIYnI7n/+wPJ4DMbz+QkM9cZN+uyW2obzwY8q7PcgkPz9UoD52hzm/Ki/sPmRjor8i/KM/y9dsv1wfkr+nmIa/Us7FPRZV57z3WWa82y+GO4OktTwn2TS86DNEPcdii7rVN5O8yCDAu26Jij+PLiM/UCFVv7K1xj5Jm4I/BW3cPWoE8z6WLbG/y5qiv5/KxT3x5ua8Wl5jvGcJWzuVtrM8/Ak8vOgzRD12Y4u63jeTvDr6z7tafWM+AGlqv0h3Yj74/oq/xXeuv8+dvr6tkZK/HvgjP7Qo4j6mz8U9nd7lvLpuZ7yIYnI7n/+wPJ4DMbz+QkM9cZN+uyW2obzwY8q7lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-1.3152729 -0.4629744 0.09658746]\n [-1.141582 -1.0515336 0.09658493]\n [-1.3842037 -1.2703489 0.09657788]\n [ 0.6405047 0.4417168 0.09658746]]", "desired_goal": "[[ 1.3782387 -0.6450211 -1.0350766 ]\n [-1.6865953 0.45176822 -0.25399786]\n [-0.08069061 1.6583444 0.14155671]\n [-1.1222631 -0.12581387 -1.0350766 ]]", "observation": "[[ 4.1278869e-01 5.2691168e-01 1.4161760e+00 -2.9394236e-01\n 1.6462187e+00 -6.4824122e-01 8.8592643e-01 -1.3152729e+00\n -4.6297440e-01 9.6587464e-02 -2.8060252e-02 -1.4125520e-02\n 3.6984999e-03 2.1606265e-02 -1.0804085e-02 4.7671311e-02\n -3.8845206e-03 -1.9740174e-02 -6.1764643e-03]\n [ 6.4368039e-01 3.1314275e-01 -7.2472322e-01 4.6129733e-01\n -1.2686582e+00 1.2811320e+00 -9.2516774e-01 -1.1415820e+00\n -1.0515336e+00 9.6584931e-02 -2.8238814e-02 -1.4059535e-02\n 4.0950603e-03 2.2173172e-02 -1.1038101e-02 4.7901064e-02\n -1.0634296e-03 -1.7970959e-02 -5.8632828e-03]\n [ 1.0823190e+00 6.3742918e-01 -8.3253956e-01 3.8810498e-01\n 1.0203639e+00 1.0762981e-01 4.7464305e-01 -1.3842037e+00\n -1.2703489e+00 9.6577875e-02 -2.8186293e-02 -1.3877476e-02\n 3.3422352e-03 2.1937648e-02 -1.1476990e-02 4.7901064e-02\n -1.0634500e-03 -1.7970975e-02 -6.3469680e-03]\n [ 2.2215787e-01 -9.1566467e-01 2.2115815e-01 -1.0859060e+00\n -1.3630301e+00 -3.7229773e-01 -1.1450707e+00 6.4050472e-01\n 4.4171679e-01 9.6587464e-02 -2.8060252e-02 -1.4125520e-02\n 3.6984999e-03 2.1606265e-02 -1.0804085e-02 4.7671311e-02\n -3.8845206e-03 -1.9740174e-02 -6.1764643e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAogZ0PIy7zrsK16M8ANMVvl942DwK16M8tQflvWVpEb0K16M8HlvavGRo+zwK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4LQCPjiDUDyr1kI+L53MPY1oKDwK16M8xLLPvdSeFT4hHRc+NMq5vczXs7u9CuI8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAogZ0PIy7zrsK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAADTFb5feNg8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAC1B+W9ZWkRvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAHlvavGRo+zwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.01489416 -0.00630898 0.02 ]\n [-0.14631271 0.02642458 0.02 ]\n [-0.11183111 -0.0355009 0.02 ]\n [-0.02665478 0.03068943 0.02 ]]", "desired_goal": "[[ 0.12764311 0.0127266 0.19027202]\n [ 0.09990918 0.01027883 0.02 ]\n [-0.10141519 0.1461137 0.14757206]\n [-0.0907177 -0.00548837 0.02759301]]", "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.48941595e-02\n -6.30897842e-03 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.46312714e-01\n 2.64245849e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.11831106e-01\n -3.55009027e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -2.66547762e-02\n 3.06894258e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.037653333333333316, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIayxhbYyVIMCUhpRSlIwBbJRLMowBdJRHQIF2/9itq591fZQoaAZoCWgPQwgczvxqDlguwJSGlFKUaBVLMmgWR0CBdhZ5AyEddX2UKGgGaAloD0MIklhS7j7nEcCUhpRSlGgVSzJoFkdAgXVEsjFAFHV9lChoBmgJaA9DCKZFfZI7LCnAlIaUUpRoFUsyaBZHQIF0bLjghr51fZQoaAZoCWgPQwgwLeqT3FErwJSGlFKUaBVLMmgWR0CBewOoYNy6dX2UKGgGaAloD0MIRkJbzqW4FsCUhpRSlGgVSzJoFkdAgXobdadMCnV9lChoBmgJaA9DCCJxj6UPjRXAlIaUUpRoFUsyaBZHQIF5SxzJZGN1fZQoaAZoCWgPQwh7EW3H1I0WwJSGlFKUaBVLMmgWR0CBeHQZ4wAVdX2UKGgGaAloD0MIHOp3YWsGIcCUhpRSlGgVSzJoFkdAgX7RW912aHV9lChoBmgJaA9DCMGRQINNrRbAlIaUUpRoFUsyaBZHQIF96ZQYUFl1fZQoaAZoCWgPQwhl/PuMC4cKwJSGlFKUaBVLMmgWR0CBfRkp7TlUdX2UKGgGaAloD0MIDqK1os05JcCUhpRSlGgVSzJoFkdAgXxBsImgJ3V9lChoBmgJaA9DCLiSHRuB+BTAlIaUUpRoFUsyaBZHQIGCpRQ79yd1fZQoaAZoCWgPQwjytPzAVT4hwJSGlFKUaBVLMmgWR0CBgbxrBTGYdX2UKGgGaAloD0MIOnR63o0FDcCUhpRSlGgVSzJoFkdAgYDrgn+hoXV9lChoBmgJaA9DCKq53GCoIybAlIaUUpRoFUsyaBZHQIGAFCmdiDx1fZQoaAZoCWgPQwg1t0JYjaUuwJSGlFKUaBVLMmgWR0CBhoJa7mMgdX2UKGgGaAloD0MIhqqYSj+hFsCUhpRSlGgVSzJoFkdAgYWZhScbznV9lChoBmgJaA9DCDiCVIodrRnAlIaUUpRoFUsyaBZHQIGEx6v7m+11fZQoaAZoCWgPQwhsPUM4ZqkkwJSGlFKUaBVLMmgWR0CBg/B7/n4gdX2UKGgGaAloD0MIhSLdzyn4IcCUhpRSlGgVSzJoFkdAgYpbJ4jbBXV9lChoBmgJaA9DCNIcWfllQBbAlIaUUpRoFUsyaBZHQIGJcc0cfeV1fZQoaAZoCWgPQwiiXYWUn0QrwJSGlFKUaBVLMmgWR0CBiKDjin50dX2UKGgGaAloD0MIIt+l1CXLKcCUhpRSlGgVSzJoFkdAgYfJtaY/mnV9lChoBmgJaA9DCCOimLwB/ijAlIaUUpRoFUsyaBZHQIGOyhWYF7l1fZQoaAZoCWgPQwhQpzy6EXYRwJSGlFKUaBVLMmgWR0CBjeTxG2CvdX2UKGgGaAloD0MItXBZhc3YJcCUhpRSlGgVSzJoFkdAgY0WgvlEJHV9lChoBmgJaA9DCCFzZVBtmC3AlIaUUpRoFUsyaBZHQIGMQbGWD6F1fZQoaAZoCWgPQwioABjPoBkgwJSGlFKUaBVLMmgWR0CBlPjwQUYbdX2UKGgGaAloD0MIYoOFkzQfHcCUhpRSlGgVSzJoFkdAgZQT5GjKxXV9lChoBmgJaA9DCGzM64hDTirAlIaUUpRoFUsyaBZHQIGTRUxVQyh1fZQoaAZoCWgPQwjVIMztXp4twJSGlFKUaBVLMmgWR0CBknDiwSrYdX2UKGgGaAloD0MIwa27eaqjKMCUhpRSlGgVSzJoFkdAgZuTLGJemnV9lChoBmgJaA9DCHKkMzDyciPAlIaUUpRoFUsyaBZHQIGarHGS6lN1fZQoaAZoCWgPQwggXtcv2BkxwJSGlFKUaBVLMmgWR0CBmd2IO6NEdX2UKGgGaAloD0MIbCbfbHPrIsCUhpRSlGgVSzJoFkdAgZkMOoYNzHV9lChoBmgJaA9DCLlUpS2uCS3AlIaUUpRoFUsyaBZHQIGierfcesB1fZQoaAZoCWgPQwgktOVcivsdwJSGlFKUaBVLMmgWR0CBoZcclw98dX2UKGgGaAloD0MINum2RC5oI8CUhpRSlGgVSzJoFkdAgaDJyIYWL3V9lChoBmgJaA9DCCkg7X+AlSjAlIaUUpRoFUsyaBZHQIGf9z+3pfR1fZQoaAZoCWgPQwjG4GHaNwcYwJSGlFKUaBVLMmgWR0CBqRsMy8BddX2UKGgGaAloD0MIgSBAho4NIsCUhpRSlGgVSzJoFkdAgag0nPVurXV9lChoBmgJaA9DCPsEUIwsWQfAlIaUUpRoFUsyaBZHQIGnZvP1L8J1fZQoaAZoCWgPQwiscMtHUuIlwJSGlFKUaBVLMmgWR0CBppMLWqcWdX2UKGgGaAloD0MIXb9gN2zzIMCUhpRSlGgVSzJoFkdAga/luejEenV9lChoBmgJaA9DCFZFuMmoaizAlIaUUpRoFUsyaBZHQIGvAEnssxx1fZQoaAZoCWgPQwin5nKDoQYpwJSGlFKUaBVLMmgWR0CBrjIsiB5HdX2UKGgGaAloD0MICXHl7J0BGcCUhpRSlGgVSzJoFkdAga1fOdGy5nV9lChoBmgJaA9DCDT1ukVgLCTAlIaUUpRoFUsyaBZHQIG2EERradt1fZQoaAZoCWgPQwgNOEvJckovwJSGlFKUaBVLMmgWR0CBtSdoWYWtdX2UKGgGaAloD0MIZmZmZmb2KsCUhpRSlGgVSzJoFkdAgbRWCdz4lHV9lChoBmgJaA9DCEbtfhXg4ynAlIaUUpRoFUsyaBZHQIGzfpW3jMp1fZQoaAZoCWgPQwh1AS8zbLQawJSGlFKUaBVLMmgWR0CBui20AtFsdX2UKGgGaAloD0MI001iEFhZEMCUhpRSlGgVSzJoFkdAgblFrM1TBXV9lChoBmgJaA9DCNNmnIaoMhPAlIaUUpRoFUsyaBZHQIG4c61b7j11fZQoaAZoCWgPQwig3SHFAJkmwJSGlFKUaBVLMmgWR0CBt5wG4ZuRdX2UKGgGaAloD0MIwjV39L+UJMCUhpRSlGgVSzJoFkdAgb5Awwj+rHV9lChoBmgJaA9DCA8KStHKBSLAlIaUUpRoFUsyaBZHQIG9V5KODJ51fZQoaAZoCWgPQwg+l6lJ8OYdwJSGlFKUaBVLMmgWR0CBvIYekpI+dX2UKGgGaAloD0MIvALRkzKhJ8CUhpRSlGgVSzJoFkdAgbuubZvkzXV9lChoBmgJaA9DCF980R4vTCTAlIaUUpRoFUsyaBZHQIHCLZHuqm11fZQoaAZoCWgPQwiTVnxD4RMewJSGlFKUaBVLMmgWR0CBwUVTJhfCdX2UKGgGaAloD0MI+cCO/wIZLMCUhpRSlGgVSzJoFkdAgcBzVMEidXV9lChoBmgJaA9DCMsuGFxzJybAlIaUUpRoFUsyaBZHQIG/nEn9ehR1fZQoaAZoCWgPQwi0HVN3ZTchwJSGlFKUaBVLMmgWR0CBxfVhCtzTdX2UKGgGaAloD0MIumWH+Ie9HMCUhpRSlGgVSzJoFkdAgcUNVzZHu3V9lChoBmgJaA9DCOvDeqNW4CfAlIaUUpRoFUsyaBZHQIHEPLNfPX11fZQoaAZoCWgPQwhpGhTNAwghwJSGlFKUaBVLMmgWR0CBw2VuaWondX2UKGgGaAloD0MI6iEa3UE8L8CUhpRSlGgVSzJoFkdAgcmwI2OyV3V9lChoBmgJaA9DCEZEMXkDfCXAlIaUUpRoFUsyaBZHQIHIxwIdELJ1fZQoaAZoCWgPQwiNQpJZvSMFwJSGlFKUaBVLMmgWR0CBx/V3ljmTdX2UKGgGaAloD0MIRrQdU3dtM8CUhpRSlGgVSzJoFkdAgccemm+Cb3V9lChoBmgJaA9DCBHhXwSNASHAlIaUUpRoFUsyaBZHQIHNoDs+mnB1fZQoaAZoCWgPQwgCRSxi2MEMwJSGlFKUaBVLMmgWR0CBzLdeIEbHdX2UKGgGaAloD0MIAVEwYwpuI8CUhpRSlGgVSzJoFkdAgcvn3lCCz3V9lChoBmgJaA9DCH7gKk8gZCnAlIaUUpRoFUsyaBZHQIHLEJv5xip1fZQoaAZoCWgPQwjdmQmGc834v5SGlFKUaBVLMmgWR0CB0W2jwhGIdX2UKGgGaAloD0MIJVryeFr+57+UhpRSlGgVSzJoFkdAgdCE7GNrCXV9lChoBmgJaA9DCKKyYU1lYSfAlIaUUpRoFUsyaBZHQIHPsyP+4sp1fZQoaAZoCWgPQwhj1SDM7aYkwJSGlFKUaBVLMmgWR0CBztvm5lOHdX2UKGgGaAloD0MI+KkqNBB7EcCUhpRSlGgVSzJoFkdAgdVLfk3juXV9lChoBmgJaA9DCH4BvXDnOiTAlIaUUpRoFUsyaBZHQIHUYzi0fHR1fZQoaAZoCWgPQwg6AyMva7oiwJSGlFKUaBVLMmgWR0CB05IcR15jdX2UKGgGaAloD0MIUirhCb0OKMCUhpRSlGgVSzJoFkdAgdK6hpQDWHV9lChoBmgJaA9DCH/fv3lx6irAlIaUUpRoFUsyaBZHQIHY9g4Otnx1fZQoaAZoCWgPQwiIY13cRisiwJSGlFKUaBVLMmgWR0CB2A2F36hydX2UKGgGaAloD0MISyAldm0fJsCUhpRSlGgVSzJoFkdAgdc7aZhKDnV9lChoBmgJaA9DCE4qGmt/pwzAlIaUUpRoFUsyaBZHQIHWZEfDDTB1fZQoaAZoCWgPQwgfMA+Z8iklwJSGlFKUaBVLMmgWR0CB3RSWqtHQdX2UKGgGaAloD0MIOQ1RhT8zIMCUhpRSlGgVSzJoFkdAgdwyO7xusXV9lChoBmgJaA9DCEhPkUPExSrAlIaUUpRoFUsyaBZHQIHbYFeOXE91fZQoaAZoCWgPQwgJF/IIbhwiwJSGlFKUaBVLMmgWR0CB2ohLXcxkdX2UKGgGaAloD0MIa32R0JZzCsCUhpRSlGgVSzJoFkdAgeEPf8/D+HV9lChoBmgJaA9DCM+6RsuBNiTAlIaUUpRoFUsyaBZHQIHgJ5C4SYh1fZQoaAZoCWgPQwjCFyZTBcMWwJSGlFKUaBVLMmgWR0CB31ZrYXfqdX2UKGgGaAloD0MIINPaNLbPL8CUhpRSlGgVSzJoFkdAgd5/oaDPGHV9lChoBmgJaA9DCLKbGf1oeB/AlIaUUpRoFUsyaBZHQIHlAB7u2JB1fZQoaAZoCWgPQwjNctnonAciwJSGlFKUaBVLMmgWR0CB5BelbeMydX2UKGgGaAloD0MIEf+wpUcDI8CUhpRSlGgVSzJoFkdAgeNHDBMzuXV9lChoBmgJaA9DCCjVPh2PWRjAlIaUUpRoFUsyaBZHQIHicCvHLid1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 190, "n_steps": 2048, "gamma": 0.95, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWV1AMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLE4WUaBpoHSiWTAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBlGgVSxOFlGggdJRSlGgjaB0olkwAAAAAAAAAAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQZRoFUsThZRoIHSUUpRoKGgdKJYTAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQGUaCxLE4WUaCB0lFKUaDJoHSiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGgsSxOFlGggdJRSlGg3TnVidWgYTmgQTmg3TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10.\n -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.\n 10.], (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (824 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -8.332770440727472, "std_reward": 4.935428068533258, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-17T12:39:19.842008"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e9459fe031407689343b7a0add8c19d0422b71e26607df0a49930c9d3141a5f
3
+ size 2781