Commit
·
e1d5528
1
Parent(s):
805821f
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1601.30 +/- 103.63
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c24a9681bc3d29965f9b3d987bff99247fff0192b90ba5bbf522df761bbafa3
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7db8daee50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7db8daeee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7db8daef70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7db8db2040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7db8db20d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7db8db2160>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7db8db21f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7db8db2280>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7db8db2310>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7db8db23a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7db8db2430>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7db8db24c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f7db8db3300>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1680338708600064538,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMl+cD1DLPO+YokEPQhZvL/i0GI/2wcHPrvD0Tw8A90+WI7Yv6f0wrl//1a9a1aJP1j8DD//uhJAcwqbvstfPzycWq4/2NyEQNgAG75LPQ8/tE1PP4Bu3T/SE7o/nu3qvT29uL+DA6c+yNbLv0qPoD/4jJY/KDn2vujXxzyDyxq/RawZPx9Vnz72+ZA/ixHgvs3KaL/6YZU/frGbPga2Kr9YFoy/Q2svvw0hJcCwFgA/8IGUP2E+U78RQa6+8vDDvgHdhb8iHWC9txdrP9bWDsA9vbi/gwOnPhvBID8HFky/K0OFP5/OTL/8N/y+EXWaP4v4Mr/VjXe+eaN+v6QQsr6PCBE/iDWBv2tLIr0r2sq/INEcvXSInL2cmLg+ZpCAv3Fjub8S68Y954WCvta0xr8CrGk/Rl7RvY3AED+k9yO/1l8xP4MDpz7I1su/BxZMv4vomr1In8a+Yn4SPk5CaT9rxY6+xH+OP/BdBT6nvkC/hDbGvgy+sz/kapU/nguMPbYvLT9L5DU/GrccP0hcqD9lfK8/JNzBvhCRhr4hDEu+8NWAPxzrOz8Uq4k/9bQfwNZfMT+DA6c+G8EgPwcWTL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABAnKY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1SeavQAAAACXFeq/AAAAAHDOAj4AAAAAoMHvPwAAAAAkzj29AAAAAL0R4j8AAAAA4a9avQAAAAB5tADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIsCGNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDGDITwAAAAAwcXwvwAAAAAAvgM+AAAAAKBc5T8AAAAA3mLJPQAAAAAiF+g/AAAAAI5ONz0AAAAAldX/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPR/i7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA8xBo9AAAAAM8M978AAAAAYyV1vQAAAAByC+A/AAAAAOjgproAAAAAK2fzPwAAAACDhFa9AAAAAA0o6b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABtPjg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAo2rWvAAAAACMm/W/AAAAAOyNEj4AAAAAVYzaPwAAAAAPHgE9AAAAAEjm3T8AAAAAqdaxPQAAAACqovu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJuzpOj7AL2MAWyUTegDjAF0lEdAqvh8leF+NXV9lChoBkdAnkHtRekYXWgHTegDaAhHQKr7LfrrxAl1fZQoaAZHQJnb2G/N7jVoB03oA2gIR0Cq/ouV5a/zdX2UKGgGR0CeCn3kxREXaAdN6ANoCEdAqwHPTodMkHV9lChoBkdAmqkJ8Sf16GgHTegDaAhHQKsEePf8/EB1fZQoaAZHQJyBxNJvo/1oB03oA2gIR0CrBzfvF3pwdX2UKGgGR0CbWwp9ZzPsaAdN6ANoCEdAqwqSMNtqH3V9lChoBkdAmSZLsWweNmgHTegDaAhHQKsO41+AmRh1fZQoaAZHQJqgarmyPdVoB03oA2gIR0CrEu9KVY6odX2UKGgGR0Catpxe9i+daAdN6ANoCEdAqxXn9ehPCXV9lChoBkdAm4FAkC3gDWgHTegDaAhHQKsZLO45Lh91fZQoaAZHQJvcIKD0165oB03oA2gIR0CrHFwF9roGdX2UKGgGR0Cc/9rS3LFGaAdN6ANoCEdAqx7+QyRB/3V9lChoBkdAm55xRuTA32gHTegDaAhHQKshsahHskZ1fZQoaAZHQJvAtBSk0rNoB03oA2gIR0CrJQuqNp/PdX2UKGgGR0CcjF2M85jpaAdN6ANoCEdAqyhnkBCD3HV9lChoBkdAnnyWT9sJpmgHTegDaAhHQKssQsEq2Bt1fZQoaAZHQJ2oeeOGTLZoB03oA2gIR0CrMEy2QXANdX2UKGgGR0Cgz7JjDsMRaAdN6ANoCEdAqzOc10knkXV9lChoBkdAoL4egam4zGgHTegDaAhHQKs2xV3ljmV1fZQoaAZHQKCQbUKiPABoB03oA2gIR0CrOZJGe+VUdX2UKGgGR0CeLGgrpaA4aAdN6ANoCEdAqzxRa/yoXXV9lChoBkdAn/8oI4VARmgHTegDaAhHQKs/mOnVG1B1fZQoaAZHQJ8cGokzGgloB03oA2gIR0CrQtYpDu0DdX2UKGgGR0CbrWHqu8sdaAdN6ANoCEdAq0aDS/j81nV9lChoBkdAmWI1GCqZMWgHTegDaAhHQKtK2re67NB1fZQoaAZHQJoAO5Zr57BoB03oA2gIR0CrUFvVmSQpdX2UKGgGR0CaOPXGwRoRaAdN6ANoCEdAq1TaNjslcHV9lChoBkdAl5L7Jr+HamgHTegDaAhHQKtXfTlT3qR1fZQoaAZHQJr6fnZCfHxoB03oA2gIR0CrWjN/OMVDdX2UKGgGR0CYYMinpB5YaAdN6ANoCEdAq12PlEJBxHV9lChoBkdAmA/yDdxhlWgHTegDaAhHQKtg0CV8kUt1fZQoaAZHQJTyaCxu89RoB03oA2gIR0CrY3tsvZh8dX2UKGgGR0CY0bLkjopyaAdN6ANoCEdAq2ZAgV45cXV9lChoBkdAmSSDhky1u2gHTegDaAhHQKtqhbfP5YZ1fZQoaAZHQJgwrXUYsNFoB03oA2gIR0Crb4ncUM5PdX2UKGgGR0CXlSADJU5uaAdN6ANoCEdAq3I5gTh5xHV9lChoBkdAllJ5V81Gb2gHTegDaAhHQKt04p1A7gd1fZQoaAZHQJjOdkCmuT1oB03oA2gIR0CreHFNUOurdX2UKGgGR0CYbDl9BrvcaAdN6ANoCEdAq3uuieumrXV9lChoBkdAmW2ZUcXFcmgHTegDaAhHQKt+XqW1MM91fZQoaAZHQJcmG6J66atoB03oA2gIR0CrgQEMb3oLdX2UKGgGR0CaXJDn/1g6aAdN6ANoCEdAq4SEcjqv/3V9lChoBkdAmItsGHHmzWgHTegDaAhHQKuJUMWGh251fZQoaAZHQJulQ/t6X0JoB03oA2gIR0CrjN/+85CGdX2UKGgGR0CaCDZeRgZ1aAdN6ANoCEdAq4+K1G9YfXV9lChoBkdAmI+7HMlkY2gHTegDaAhHQKuS25IYm9h1fZQoaAZHQJvb6xs2vStoB03oA2gIR0CrlhJV0cOtdX2UKGgGR0Cb3PggHNX6aAdN6ANoCEdAq5ixuCPIXHV9lChoBkdAmnnbM1TBImgHTegDaAhHQKubXFxXGOx1fZQoaAZHQJWtRKFqSHNoB03oA2gIR0CrnqrGJemfdX2UKGgGR0CXu0jCYTkAaAdN6ANoCEdAq6K3yup0fnV9lChoBkdAl6bWaDwpfGgHTegDaAhHQKumvx0dRzl1fZQoaAZHQJg4Om8/UvxoB03oA2gIR0CrqhpK8L8adX2UKGgGR0CXPk6lchTwaAdN6ANoCEdAq61f8ZUDMnV9lChoBkdAmSAkFbFCLWgHTegDaAhHQKuwidwvQF91fZQoaAZHQJhjblmvnr9oB03oA2gIR0Crs0DCP6sRdX2UKGgGR0CXxbU47zTXaAdN6ANoCEdAq7Xf4Kx9onV9lChoBkdAmP4U5U96kmgHTegDaAhHQKu5GqWC2+h1fZQoaAZHQJb6ezHCGetoB03oA2gIR0CrvEhU70WedX2UKGgGR0CV4/LZBcAzaAdN6ANoCEdAq7/y+evpyXV9lChoBkdAmIVeZ5Rj0GgHTegDaAhHQKvEHDqnm7t1fZQoaAZHQJgaXxb0OExoB03oA2gIR0Crx8qBmPHUdX2UKGgGR0CVeExXGOuJaAdN6ANoCEdAq8r0OoYNzHV9lChoBkdAl62OVC5VfmgHTegDaAhHQKvNd+/gzgx1fZQoaAZHQJTtjhYNiH9oB03oA2gIR0Cr0BzhgmZ3dX2UKGgGR0CWPX238XN1aAdN6ANoCEdAq9Nh8KG+K3V9lChoBkdAk9GY6nzg/GgHTegDaAhHQKvWhEqDsdF1fZQoaAZHQJUi0IE8q4JoB03oA2gIR0Cr2RsySFGodX2UKGgGR0CVmNrj5sTGaAdN6ANoCEdAq90I6QvHtHV9lChoBkdAlw2ZFLFn7GgHTegDaAhHQKvh3g62fCh1fZQoaAZHQJb1E6jnFHdoB03oA2gIR0Cr5RQM6RyPdX2UKGgGR0CV/3R0U47zaAdN6ANoCEdAq+ek/+sHSnV9lChoBkdAmKDV72L5ymgHTegDaAhHQKvqR9mYjSp1fZQoaAZHQJTbcKVpsXVoB03oA2gIR0Cr7ZEeQuEmdX2UKGgGR0CWWgNtqHoHaAdN6ANoCEdAq/D4Hoouw3V9lChoBkdAlMNlWCEpRWgHTegDaAhHQKvzktuk1uR1fZQoaAZHQJRQfGecx0xoB03oA2gIR0Cr9rKH446wdX2UKGgGR0CVVMH4XXRPaAdN6ANoCEdAq/uigqVhTnV9lChoBkdAlmMMA3kxRGgHTegDaAhHQKv/ehpxm051fZQoaAZHQJS6g6r/82toB03oA2gIR0CsAf0NBnjAdX2UKGgGR0CUpL3Dej20aAdN6ANoCEdArASqE12q1nV9lChoBkdAl3GxWLgn+mgHTegDaAhHQKwH5N0NjLB1fZQoaAZHQJO8jo3aSLZoB03oA2gIR0CsCxh0p3HJdX2UKGgGR0CTEFfDk2gnaAdN6ANoCEdArA21+1Bt13V9lChoBkdAliYnrMTviWgHTegDaAhHQKwQa4J/oaF1fZQoaAZHQJRZ4NDtw71oB03oA2gIR0CsFKV1wHZ9dX2UKGgGR0CVNNVJL/S6aAdN6ANoCEdArBmuLJjlP3V9lChoBkdAl1tfXsgMdGgHTegDaAhHQKwcaMAmzB11fZQoaAZHQJH2CtITXatoB03oA2gIR0CsHyAM+eOGdX2UKGgGR0CDPuRODaoNaAdN3wFoCEdArB+BWNm16XV9lChoBkdAlwUfpIMBqGgHTegDaAhHQKwifg75mAd1fZQoaAZHQJc7oMiKR+1oB03oA2gIR0CsKD4Y77sOdX2UKGgGR0CTF6ZIQOFyaAdN6ANoCEdArCr78k2P1nV9lChoBkdAlv3mzSkTH2gHTegDaAhHQKwraOc2BJ91fZQoaAZHQJD1ctwrDqJoB03oA2gIR0CsLo/29L6DdX2UKGgGR0CN12NCqp97aAdN6ANoCEdArDcUZBLPEHV9lChoBkdAloP3HvMKTmgHTegDaAhHQKw5voFFDv51fZQoaAZHQJNx5mwqy4ZoB03oA2gIR0CsOhjLjghsdX2UKGgGR0CXJyb/Ot4iaAdN6ANoCEdArDz2tW+49XVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3a97b7efeec29635ba33224b9b5eef4278358622ce4ef1a087abde89f6736a3
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a61defeee5827693df35c93cee2360703ff9c086486ff4a81a2ff88984d2fb5
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7db8daee50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7db8daeee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7db8daef70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7db8db2040>", "_build": "<function ActorCriticPolicy._build at 0x7f7db8db20d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7db8db2160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7db8db21f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7db8db2280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7db8db2310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7db8db23a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7db8db2430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7db8db24c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7db8db3300>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680338708600064538, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMl+cD1DLPO+YokEPQhZvL/i0GI/2wcHPrvD0Tw8A90+WI7Yv6f0wrl//1a9a1aJP1j8DD//uhJAcwqbvstfPzycWq4/2NyEQNgAG75LPQ8/tE1PP4Bu3T/SE7o/nu3qvT29uL+DA6c+yNbLv0qPoD/4jJY/KDn2vujXxzyDyxq/RawZPx9Vnz72+ZA/ixHgvs3KaL/6YZU/frGbPga2Kr9YFoy/Q2svvw0hJcCwFgA/8IGUP2E+U78RQa6+8vDDvgHdhb8iHWC9txdrP9bWDsA9vbi/gwOnPhvBID8HFky/K0OFP5/OTL/8N/y+EXWaP4v4Mr/VjXe+eaN+v6QQsr6PCBE/iDWBv2tLIr0r2sq/INEcvXSInL2cmLg+ZpCAv3Fjub8S68Y954WCvta0xr8CrGk/Rl7RvY3AED+k9yO/1l8xP4MDpz7I1su/BxZMv4vomr1In8a+Yn4SPk5CaT9rxY6+xH+OP/BdBT6nvkC/hDbGvgy+sz/kapU/nguMPbYvLT9L5DU/GrccP0hcqD9lfK8/JNzBvhCRhr4hDEu+8NWAPxzrOz8Uq4k/9bQfwNZfMT+DA6c+G8EgPwcWTL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABAnKY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1SeavQAAAACXFeq/AAAAAHDOAj4AAAAAoMHvPwAAAAAkzj29AAAAAL0R4j8AAAAA4a9avQAAAAB5tADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIsCGNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDGDITwAAAAAwcXwvwAAAAAAvgM+AAAAAKBc5T8AAAAA3mLJPQAAAAAiF+g/AAAAAI5ONz0AAAAAldX/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPR/i7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA8xBo9AAAAAM8M978AAAAAYyV1vQAAAAByC+A/AAAAAOjgproAAAAAK2fzPwAAAACDhFa9AAAAAA0o6b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABtPjg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAo2rWvAAAAACMm/W/AAAAAOyNEj4AAAAAVYzaPwAAAAAPHgE9AAAAAEjm3T8AAAAAqdaxPQAAAACqovu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJuzpOj7AL2MAWyUTegDjAF0lEdAqvh8leF+NXV9lChoBkdAnkHtRekYXWgHTegDaAhHQKr7LfrrxAl1fZQoaAZHQJnb2G/N7jVoB03oA2gIR0Cq/ouV5a/zdX2UKGgGR0CeCn3kxREXaAdN6ANoCEdAqwHPTodMkHV9lChoBkdAmqkJ8Sf16GgHTegDaAhHQKsEePf8/EB1fZQoaAZHQJyBxNJvo/1oB03oA2gIR0CrBzfvF3pwdX2UKGgGR0CbWwp9ZzPsaAdN6ANoCEdAqwqSMNtqH3V9lChoBkdAmSZLsWweNmgHTegDaAhHQKsO41+AmRh1fZQoaAZHQJqgarmyPdVoB03oA2gIR0CrEu9KVY6odX2UKGgGR0Catpxe9i+daAdN6ANoCEdAqxXn9ehPCXV9lChoBkdAm4FAkC3gDWgHTegDaAhHQKsZLO45Lh91fZQoaAZHQJvcIKD0165oB03oA2gIR0CrHFwF9roGdX2UKGgGR0Cc/9rS3LFGaAdN6ANoCEdAqx7+QyRB/3V9lChoBkdAm55xRuTA32gHTegDaAhHQKshsahHskZ1fZQoaAZHQJvAtBSk0rNoB03oA2gIR0CrJQuqNp/PdX2UKGgGR0CcjF2M85jpaAdN6ANoCEdAqyhnkBCD3HV9lChoBkdAnnyWT9sJpmgHTegDaAhHQKssQsEq2Bt1fZQoaAZHQJ2oeeOGTLZoB03oA2gIR0CrMEy2QXANdX2UKGgGR0Cgz7JjDsMRaAdN6ANoCEdAqzOc10knkXV9lChoBkdAoL4egam4zGgHTegDaAhHQKs2xV3ljmV1fZQoaAZHQKCQbUKiPABoB03oA2gIR0CrOZJGe+VUdX2UKGgGR0CeLGgrpaA4aAdN6ANoCEdAqzxRa/yoXXV9lChoBkdAn/8oI4VARmgHTegDaAhHQKs/mOnVG1B1fZQoaAZHQJ8cGokzGgloB03oA2gIR0CrQtYpDu0DdX2UKGgGR0CbrWHqu8sdaAdN6ANoCEdAq0aDS/j81nV9lChoBkdAmWI1GCqZMWgHTegDaAhHQKtK2re67NB1fZQoaAZHQJoAO5Zr57BoB03oA2gIR0CrUFvVmSQpdX2UKGgGR0CaOPXGwRoRaAdN6ANoCEdAq1TaNjslcHV9lChoBkdAl5L7Jr+HamgHTegDaAhHQKtXfTlT3qR1fZQoaAZHQJr6fnZCfHxoB03oA2gIR0CrWjN/OMVDdX2UKGgGR0CYYMinpB5YaAdN6ANoCEdAq12PlEJBxHV9lChoBkdAmA/yDdxhlWgHTegDaAhHQKtg0CV8kUt1fZQoaAZHQJTyaCxu89RoB03oA2gIR0CrY3tsvZh8dX2UKGgGR0CY0bLkjopyaAdN6ANoCEdAq2ZAgV45cXV9lChoBkdAmSSDhky1u2gHTegDaAhHQKtqhbfP5YZ1fZQoaAZHQJgwrXUYsNFoB03oA2gIR0Crb4ncUM5PdX2UKGgGR0CXlSADJU5uaAdN6ANoCEdAq3I5gTh5xHV9lChoBkdAllJ5V81Gb2gHTegDaAhHQKt04p1A7gd1fZQoaAZHQJjOdkCmuT1oB03oA2gIR0CreHFNUOurdX2UKGgGR0CYbDl9BrvcaAdN6ANoCEdAq3uuieumrXV9lChoBkdAmW2ZUcXFcmgHTegDaAhHQKt+XqW1MM91fZQoaAZHQJcmG6J66atoB03oA2gIR0CrgQEMb3oLdX2UKGgGR0CaXJDn/1g6aAdN6ANoCEdAq4SEcjqv/3V9lChoBkdAmItsGHHmzWgHTegDaAhHQKuJUMWGh251fZQoaAZHQJulQ/t6X0JoB03oA2gIR0CrjN/+85CGdX2UKGgGR0CaCDZeRgZ1aAdN6ANoCEdAq4+K1G9YfXV9lChoBkdAmI+7HMlkY2gHTegDaAhHQKuS25IYm9h1fZQoaAZHQJvb6xs2vStoB03oA2gIR0CrlhJV0cOtdX2UKGgGR0Cb3PggHNX6aAdN6ANoCEdAq5ixuCPIXHV9lChoBkdAmnnbM1TBImgHTegDaAhHQKubXFxXGOx1fZQoaAZHQJWtRKFqSHNoB03oA2gIR0CrnqrGJemfdX2UKGgGR0CXu0jCYTkAaAdN6ANoCEdAq6K3yup0fnV9lChoBkdAl6bWaDwpfGgHTegDaAhHQKumvx0dRzl1fZQoaAZHQJg4Om8/UvxoB03oA2gIR0CrqhpK8L8adX2UKGgGR0CXPk6lchTwaAdN6ANoCEdAq61f8ZUDMnV9lChoBkdAmSAkFbFCLWgHTegDaAhHQKuwidwvQF91fZQoaAZHQJhjblmvnr9oB03oA2gIR0Crs0DCP6sRdX2UKGgGR0CXxbU47zTXaAdN6ANoCEdAq7Xf4Kx9onV9lChoBkdAmP4U5U96kmgHTegDaAhHQKu5GqWC2+h1fZQoaAZHQJb6ezHCGetoB03oA2gIR0CrvEhU70WedX2UKGgGR0CV4/LZBcAzaAdN6ANoCEdAq7/y+evpyXV9lChoBkdAmIVeZ5Rj0GgHTegDaAhHQKvEHDqnm7t1fZQoaAZHQJgaXxb0OExoB03oA2gIR0Crx8qBmPHUdX2UKGgGR0CVeExXGOuJaAdN6ANoCEdAq8r0OoYNzHV9lChoBkdAl62OVC5VfmgHTegDaAhHQKvNd+/gzgx1fZQoaAZHQJTtjhYNiH9oB03oA2gIR0Cr0BzhgmZ3dX2UKGgGR0CWPX238XN1aAdN6ANoCEdAq9Nh8KG+K3V9lChoBkdAk9GY6nzg/GgHTegDaAhHQKvWhEqDsdF1fZQoaAZHQJUi0IE8q4JoB03oA2gIR0Cr2RsySFGodX2UKGgGR0CVmNrj5sTGaAdN6ANoCEdAq90I6QvHtHV9lChoBkdAlw2ZFLFn7GgHTegDaAhHQKvh3g62fCh1fZQoaAZHQJb1E6jnFHdoB03oA2gIR0Cr5RQM6RyPdX2UKGgGR0CV/3R0U47zaAdN6ANoCEdAq+ek/+sHSnV9lChoBkdAmKDV72L5ymgHTegDaAhHQKvqR9mYjSp1fZQoaAZHQJTbcKVpsXVoB03oA2gIR0Cr7ZEeQuEmdX2UKGgGR0CWWgNtqHoHaAdN6ANoCEdAq/D4Hoouw3V9lChoBkdAlMNlWCEpRWgHTegDaAhHQKvzktuk1uR1fZQoaAZHQJRQfGecx0xoB03oA2gIR0Cr9rKH446wdX2UKGgGR0CVVMH4XXRPaAdN6ANoCEdAq/uigqVhTnV9lChoBkdAlmMMA3kxRGgHTegDaAhHQKv/ehpxm051fZQoaAZHQJS6g6r/82toB03oA2gIR0CsAf0NBnjAdX2UKGgGR0CUpL3Dej20aAdN6ANoCEdArASqE12q1nV9lChoBkdAl3GxWLgn+mgHTegDaAhHQKwH5N0NjLB1fZQoaAZHQJO8jo3aSLZoB03oA2gIR0CsCxh0p3HJdX2UKGgGR0CTEFfDk2gnaAdN6ANoCEdArA21+1Bt13V9lChoBkdAliYnrMTviWgHTegDaAhHQKwQa4J/oaF1fZQoaAZHQJRZ4NDtw71oB03oA2gIR0CsFKV1wHZ9dX2UKGgGR0CVNNVJL/S6aAdN6ANoCEdArBmuLJjlP3V9lChoBkdAl1tfXsgMdGgHTegDaAhHQKwcaMAmzB11fZQoaAZHQJH2CtITXatoB03oA2gIR0CsHyAM+eOGdX2UKGgGR0CDPuRODaoNaAdN3wFoCEdArB+BWNm16XV9lChoBkdAlwUfpIMBqGgHTegDaAhHQKwifg75mAd1fZQoaAZHQJc7oMiKR+1oB03oA2gIR0CsKD4Y77sOdX2UKGgGR0CTF6ZIQOFyaAdN6ANoCEdArCr78k2P1nV9lChoBkdAlv3mzSkTH2gHTegDaAhHQKwraOc2BJ91fZQoaAZHQJD1ctwrDqJoB03oA2gIR0CsLo/29L6DdX2UKGgGR0CN12NCqp97aAdN6ANoCEdArDcUZBLPEHV9lChoBkdAloP3HvMKTmgHTegDaAhHQKw5voFFDv51fZQoaAZHQJNx5mwqy4ZoB03oA2gIR0CsOhjLjghsdX2UKGgGR0CXJyb/Ot4iaAdN6ANoCEdArDz2tW+49XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb80406de8017acc242db1b2e480d9a664b5943db9fd4666c28c948674008979
|
3 |
+
size 1188361
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1601.302807930438, "std_reward": 103.62665177690259, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-01T09:44:56.930030"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:376589bd9a3ad852af4a12b6cc3aebc4e8ccea0a0c50182cd3244e05d5e19541
|
3 |
+
size 2136
|