manuelmaiorano commited on
Commit
e1d5528
·
1 Parent(s): 805821f

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1601.30 +/- 103.63
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c24a9681bc3d29965f9b3d987bff99247fff0192b90ba5bbf522df761bbafa3
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7db8daee50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7db8daeee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7db8daef70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7db8db2040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7db8db20d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7db8db2160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7db8db21f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7db8db2280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7db8db2310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7db8db23a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7db8db2430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7db8db24c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f7db8db3300>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1680338708600064538,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMl+cD1DLPO+YokEPQhZvL/i0GI/2wcHPrvD0Tw8A90+WI7Yv6f0wrl//1a9a1aJP1j8DD//uhJAcwqbvstfPzycWq4/2NyEQNgAG75LPQ8/tE1PP4Bu3T/SE7o/nu3qvT29uL+DA6c+yNbLv0qPoD/4jJY/KDn2vujXxzyDyxq/RawZPx9Vnz72+ZA/ixHgvs3KaL/6YZU/frGbPga2Kr9YFoy/Q2svvw0hJcCwFgA/8IGUP2E+U78RQa6+8vDDvgHdhb8iHWC9txdrP9bWDsA9vbi/gwOnPhvBID8HFky/K0OFP5/OTL/8N/y+EXWaP4v4Mr/VjXe+eaN+v6QQsr6PCBE/iDWBv2tLIr0r2sq/INEcvXSInL2cmLg+ZpCAv3Fjub8S68Y954WCvta0xr8CrGk/Rl7RvY3AED+k9yO/1l8xP4MDpz7I1su/BxZMv4vomr1In8a+Yn4SPk5CaT9rxY6+xH+OP/BdBT6nvkC/hDbGvgy+sz/kapU/nguMPbYvLT9L5DU/GrccP0hcqD9lfK8/JNzBvhCRhr4hDEu+8NWAPxzrOz8Uq4k/9bQfwNZfMT+DA6c+G8EgPwcWTL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABAnKY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1SeavQAAAACXFeq/AAAAAHDOAj4AAAAAoMHvPwAAAAAkzj29AAAAAL0R4j8AAAAA4a9avQAAAAB5tADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIsCGNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDGDITwAAAAAwcXwvwAAAAAAvgM+AAAAAKBc5T8AAAAA3mLJPQAAAAAiF+g/AAAAAI5ONz0AAAAAldX/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPR/i7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA8xBo9AAAAAM8M978AAAAAYyV1vQAAAAByC+A/AAAAAOjgproAAAAAK2fzPwAAAACDhFa9AAAAAA0o6b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABtPjg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAo2rWvAAAAACMm/W/AAAAAOyNEj4AAAAAVYzaPwAAAAAPHgE9AAAAAEjm3T8AAAAAqdaxPQAAAACqovu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJuzpOj7AL2MAWyUTegDjAF0lEdAqvh8leF+NXV9lChoBkdAnkHtRekYXWgHTegDaAhHQKr7LfrrxAl1fZQoaAZHQJnb2G/N7jVoB03oA2gIR0Cq/ouV5a/zdX2UKGgGR0CeCn3kxREXaAdN6ANoCEdAqwHPTodMkHV9lChoBkdAmqkJ8Sf16GgHTegDaAhHQKsEePf8/EB1fZQoaAZHQJyBxNJvo/1oB03oA2gIR0CrBzfvF3pwdX2UKGgGR0CbWwp9ZzPsaAdN6ANoCEdAqwqSMNtqH3V9lChoBkdAmSZLsWweNmgHTegDaAhHQKsO41+AmRh1fZQoaAZHQJqgarmyPdVoB03oA2gIR0CrEu9KVY6odX2UKGgGR0Catpxe9i+daAdN6ANoCEdAqxXn9ehPCXV9lChoBkdAm4FAkC3gDWgHTegDaAhHQKsZLO45Lh91fZQoaAZHQJvcIKD0165oB03oA2gIR0CrHFwF9roGdX2UKGgGR0Cc/9rS3LFGaAdN6ANoCEdAqx7+QyRB/3V9lChoBkdAm55xRuTA32gHTegDaAhHQKshsahHskZ1fZQoaAZHQJvAtBSk0rNoB03oA2gIR0CrJQuqNp/PdX2UKGgGR0CcjF2M85jpaAdN6ANoCEdAqyhnkBCD3HV9lChoBkdAnnyWT9sJpmgHTegDaAhHQKssQsEq2Bt1fZQoaAZHQJ2oeeOGTLZoB03oA2gIR0CrMEy2QXANdX2UKGgGR0Cgz7JjDsMRaAdN6ANoCEdAqzOc10knkXV9lChoBkdAoL4egam4zGgHTegDaAhHQKs2xV3ljmV1fZQoaAZHQKCQbUKiPABoB03oA2gIR0CrOZJGe+VUdX2UKGgGR0CeLGgrpaA4aAdN6ANoCEdAqzxRa/yoXXV9lChoBkdAn/8oI4VARmgHTegDaAhHQKs/mOnVG1B1fZQoaAZHQJ8cGokzGgloB03oA2gIR0CrQtYpDu0DdX2UKGgGR0CbrWHqu8sdaAdN6ANoCEdAq0aDS/j81nV9lChoBkdAmWI1GCqZMWgHTegDaAhHQKtK2re67NB1fZQoaAZHQJoAO5Zr57BoB03oA2gIR0CrUFvVmSQpdX2UKGgGR0CaOPXGwRoRaAdN6ANoCEdAq1TaNjslcHV9lChoBkdAl5L7Jr+HamgHTegDaAhHQKtXfTlT3qR1fZQoaAZHQJr6fnZCfHxoB03oA2gIR0CrWjN/OMVDdX2UKGgGR0CYYMinpB5YaAdN6ANoCEdAq12PlEJBxHV9lChoBkdAmA/yDdxhlWgHTegDaAhHQKtg0CV8kUt1fZQoaAZHQJTyaCxu89RoB03oA2gIR0CrY3tsvZh8dX2UKGgGR0CY0bLkjopyaAdN6ANoCEdAq2ZAgV45cXV9lChoBkdAmSSDhky1u2gHTegDaAhHQKtqhbfP5YZ1fZQoaAZHQJgwrXUYsNFoB03oA2gIR0Crb4ncUM5PdX2UKGgGR0CXlSADJU5uaAdN6ANoCEdAq3I5gTh5xHV9lChoBkdAllJ5V81Gb2gHTegDaAhHQKt04p1A7gd1fZQoaAZHQJjOdkCmuT1oB03oA2gIR0CreHFNUOurdX2UKGgGR0CYbDl9BrvcaAdN6ANoCEdAq3uuieumrXV9lChoBkdAmW2ZUcXFcmgHTegDaAhHQKt+XqW1MM91fZQoaAZHQJcmG6J66atoB03oA2gIR0CrgQEMb3oLdX2UKGgGR0CaXJDn/1g6aAdN6ANoCEdAq4SEcjqv/3V9lChoBkdAmItsGHHmzWgHTegDaAhHQKuJUMWGh251fZQoaAZHQJulQ/t6X0JoB03oA2gIR0CrjN/+85CGdX2UKGgGR0CaCDZeRgZ1aAdN6ANoCEdAq4+K1G9YfXV9lChoBkdAmI+7HMlkY2gHTegDaAhHQKuS25IYm9h1fZQoaAZHQJvb6xs2vStoB03oA2gIR0CrlhJV0cOtdX2UKGgGR0Cb3PggHNX6aAdN6ANoCEdAq5ixuCPIXHV9lChoBkdAmnnbM1TBImgHTegDaAhHQKubXFxXGOx1fZQoaAZHQJWtRKFqSHNoB03oA2gIR0CrnqrGJemfdX2UKGgGR0CXu0jCYTkAaAdN6ANoCEdAq6K3yup0fnV9lChoBkdAl6bWaDwpfGgHTegDaAhHQKumvx0dRzl1fZQoaAZHQJg4Om8/UvxoB03oA2gIR0CrqhpK8L8adX2UKGgGR0CXPk6lchTwaAdN6ANoCEdAq61f8ZUDMnV9lChoBkdAmSAkFbFCLWgHTegDaAhHQKuwidwvQF91fZQoaAZHQJhjblmvnr9oB03oA2gIR0Crs0DCP6sRdX2UKGgGR0CXxbU47zTXaAdN6ANoCEdAq7Xf4Kx9onV9lChoBkdAmP4U5U96kmgHTegDaAhHQKu5GqWC2+h1fZQoaAZHQJb6ezHCGetoB03oA2gIR0CrvEhU70WedX2UKGgGR0CV4/LZBcAzaAdN6ANoCEdAq7/y+evpyXV9lChoBkdAmIVeZ5Rj0GgHTegDaAhHQKvEHDqnm7t1fZQoaAZHQJgaXxb0OExoB03oA2gIR0Crx8qBmPHUdX2UKGgGR0CVeExXGOuJaAdN6ANoCEdAq8r0OoYNzHV9lChoBkdAl62OVC5VfmgHTegDaAhHQKvNd+/gzgx1fZQoaAZHQJTtjhYNiH9oB03oA2gIR0Cr0BzhgmZ3dX2UKGgGR0CWPX238XN1aAdN6ANoCEdAq9Nh8KG+K3V9lChoBkdAk9GY6nzg/GgHTegDaAhHQKvWhEqDsdF1fZQoaAZHQJUi0IE8q4JoB03oA2gIR0Cr2RsySFGodX2UKGgGR0CVmNrj5sTGaAdN6ANoCEdAq90I6QvHtHV9lChoBkdAlw2ZFLFn7GgHTegDaAhHQKvh3g62fCh1fZQoaAZHQJb1E6jnFHdoB03oA2gIR0Cr5RQM6RyPdX2UKGgGR0CV/3R0U47zaAdN6ANoCEdAq+ek/+sHSnV9lChoBkdAmKDV72L5ymgHTegDaAhHQKvqR9mYjSp1fZQoaAZHQJTbcKVpsXVoB03oA2gIR0Cr7ZEeQuEmdX2UKGgGR0CWWgNtqHoHaAdN6ANoCEdAq/D4Hoouw3V9lChoBkdAlMNlWCEpRWgHTegDaAhHQKvzktuk1uR1fZQoaAZHQJRQfGecx0xoB03oA2gIR0Cr9rKH446wdX2UKGgGR0CVVMH4XXRPaAdN6ANoCEdAq/uigqVhTnV9lChoBkdAlmMMA3kxRGgHTegDaAhHQKv/ehpxm051fZQoaAZHQJS6g6r/82toB03oA2gIR0CsAf0NBnjAdX2UKGgGR0CUpL3Dej20aAdN6ANoCEdArASqE12q1nV9lChoBkdAl3GxWLgn+mgHTegDaAhHQKwH5N0NjLB1fZQoaAZHQJO8jo3aSLZoB03oA2gIR0CsCxh0p3HJdX2UKGgGR0CTEFfDk2gnaAdN6ANoCEdArA21+1Bt13V9lChoBkdAliYnrMTviWgHTegDaAhHQKwQa4J/oaF1fZQoaAZHQJRZ4NDtw71oB03oA2gIR0CsFKV1wHZ9dX2UKGgGR0CVNNVJL/S6aAdN6ANoCEdArBmuLJjlP3V9lChoBkdAl1tfXsgMdGgHTegDaAhHQKwcaMAmzB11fZQoaAZHQJH2CtITXatoB03oA2gIR0CsHyAM+eOGdX2UKGgGR0CDPuRODaoNaAdN3wFoCEdArB+BWNm16XV9lChoBkdAlwUfpIMBqGgHTegDaAhHQKwifg75mAd1fZQoaAZHQJc7oMiKR+1oB03oA2gIR0CsKD4Y77sOdX2UKGgGR0CTF6ZIQOFyaAdN6ANoCEdArCr78k2P1nV9lChoBkdAlv3mzSkTH2gHTegDaAhHQKwraOc2BJ91fZQoaAZHQJD1ctwrDqJoB03oA2gIR0CsLo/29L6DdX2UKGgGR0CN12NCqp97aAdN6ANoCEdArDcUZBLPEHV9lChoBkdAloP3HvMKTmgHTegDaAhHQKw5voFFDv51fZQoaAZHQJNx5mwqy4ZoB03oA2gIR0CsOhjLjghsdX2UKGgGR0CXJyb/Ot4iaAdN6ANoCEdArDz2tW+49XVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3a97b7efeec29635ba33224b9b5eef4278358622ce4ef1a087abde89f6736a3
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a61defeee5827693df35c93cee2360703ff9c086486ff4a81a2ff88984d2fb5
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7db8daee50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7db8daeee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7db8daef70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7db8db2040>", "_build": "<function ActorCriticPolicy._build at 0x7f7db8db20d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7db8db2160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7db8db21f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7db8db2280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7db8db2310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7db8db23a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7db8db2430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7db8db24c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7db8db3300>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680338708600064538, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMl+cD1DLPO+YokEPQhZvL/i0GI/2wcHPrvD0Tw8A90+WI7Yv6f0wrl//1a9a1aJP1j8DD//uhJAcwqbvstfPzycWq4/2NyEQNgAG75LPQ8/tE1PP4Bu3T/SE7o/nu3qvT29uL+DA6c+yNbLv0qPoD/4jJY/KDn2vujXxzyDyxq/RawZPx9Vnz72+ZA/ixHgvs3KaL/6YZU/frGbPga2Kr9YFoy/Q2svvw0hJcCwFgA/8IGUP2E+U78RQa6+8vDDvgHdhb8iHWC9txdrP9bWDsA9vbi/gwOnPhvBID8HFky/K0OFP5/OTL/8N/y+EXWaP4v4Mr/VjXe+eaN+v6QQsr6PCBE/iDWBv2tLIr0r2sq/INEcvXSInL2cmLg+ZpCAv3Fjub8S68Y954WCvta0xr8CrGk/Rl7RvY3AED+k9yO/1l8xP4MDpz7I1su/BxZMv4vomr1In8a+Yn4SPk5CaT9rxY6+xH+OP/BdBT6nvkC/hDbGvgy+sz/kapU/nguMPbYvLT9L5DU/GrccP0hcqD9lfK8/JNzBvhCRhr4hDEu+8NWAPxzrOz8Uq4k/9bQfwNZfMT+DA6c+G8EgPwcWTL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABAnKY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1SeavQAAAACXFeq/AAAAAHDOAj4AAAAAoMHvPwAAAAAkzj29AAAAAL0R4j8AAAAA4a9avQAAAAB5tADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIsCGNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDGDITwAAAAAwcXwvwAAAAAAvgM+AAAAAKBc5T8AAAAA3mLJPQAAAAAiF+g/AAAAAI5ONz0AAAAAldX/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPR/i7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA8xBo9AAAAAM8M978AAAAAYyV1vQAAAAByC+A/AAAAAOjgproAAAAAK2fzPwAAAACDhFa9AAAAAA0o6b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABtPjg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAo2rWvAAAAACMm/W/AAAAAOyNEj4AAAAAVYzaPwAAAAAPHgE9AAAAAEjm3T8AAAAAqdaxPQAAAACqovu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJuzpOj7AL2MAWyUTegDjAF0lEdAqvh8leF+NXV9lChoBkdAnkHtRekYXWgHTegDaAhHQKr7LfrrxAl1fZQoaAZHQJnb2G/N7jVoB03oA2gIR0Cq/ouV5a/zdX2UKGgGR0CeCn3kxREXaAdN6ANoCEdAqwHPTodMkHV9lChoBkdAmqkJ8Sf16GgHTegDaAhHQKsEePf8/EB1fZQoaAZHQJyBxNJvo/1oB03oA2gIR0CrBzfvF3pwdX2UKGgGR0CbWwp9ZzPsaAdN6ANoCEdAqwqSMNtqH3V9lChoBkdAmSZLsWweNmgHTegDaAhHQKsO41+AmRh1fZQoaAZHQJqgarmyPdVoB03oA2gIR0CrEu9KVY6odX2UKGgGR0Catpxe9i+daAdN6ANoCEdAqxXn9ehPCXV9lChoBkdAm4FAkC3gDWgHTegDaAhHQKsZLO45Lh91fZQoaAZHQJvcIKD0165oB03oA2gIR0CrHFwF9roGdX2UKGgGR0Cc/9rS3LFGaAdN6ANoCEdAqx7+QyRB/3V9lChoBkdAm55xRuTA32gHTegDaAhHQKshsahHskZ1fZQoaAZHQJvAtBSk0rNoB03oA2gIR0CrJQuqNp/PdX2UKGgGR0CcjF2M85jpaAdN6ANoCEdAqyhnkBCD3HV9lChoBkdAnnyWT9sJpmgHTegDaAhHQKssQsEq2Bt1fZQoaAZHQJ2oeeOGTLZoB03oA2gIR0CrMEy2QXANdX2UKGgGR0Cgz7JjDsMRaAdN6ANoCEdAqzOc10knkXV9lChoBkdAoL4egam4zGgHTegDaAhHQKs2xV3ljmV1fZQoaAZHQKCQbUKiPABoB03oA2gIR0CrOZJGe+VUdX2UKGgGR0CeLGgrpaA4aAdN6ANoCEdAqzxRa/yoXXV9lChoBkdAn/8oI4VARmgHTegDaAhHQKs/mOnVG1B1fZQoaAZHQJ8cGokzGgloB03oA2gIR0CrQtYpDu0DdX2UKGgGR0CbrWHqu8sdaAdN6ANoCEdAq0aDS/j81nV9lChoBkdAmWI1GCqZMWgHTegDaAhHQKtK2re67NB1fZQoaAZHQJoAO5Zr57BoB03oA2gIR0CrUFvVmSQpdX2UKGgGR0CaOPXGwRoRaAdN6ANoCEdAq1TaNjslcHV9lChoBkdAl5L7Jr+HamgHTegDaAhHQKtXfTlT3qR1fZQoaAZHQJr6fnZCfHxoB03oA2gIR0CrWjN/OMVDdX2UKGgGR0CYYMinpB5YaAdN6ANoCEdAq12PlEJBxHV9lChoBkdAmA/yDdxhlWgHTegDaAhHQKtg0CV8kUt1fZQoaAZHQJTyaCxu89RoB03oA2gIR0CrY3tsvZh8dX2UKGgGR0CY0bLkjopyaAdN6ANoCEdAq2ZAgV45cXV9lChoBkdAmSSDhky1u2gHTegDaAhHQKtqhbfP5YZ1fZQoaAZHQJgwrXUYsNFoB03oA2gIR0Crb4ncUM5PdX2UKGgGR0CXlSADJU5uaAdN6ANoCEdAq3I5gTh5xHV9lChoBkdAllJ5V81Gb2gHTegDaAhHQKt04p1A7gd1fZQoaAZHQJjOdkCmuT1oB03oA2gIR0CreHFNUOurdX2UKGgGR0CYbDl9BrvcaAdN6ANoCEdAq3uuieumrXV9lChoBkdAmW2ZUcXFcmgHTegDaAhHQKt+XqW1MM91fZQoaAZHQJcmG6J66atoB03oA2gIR0CrgQEMb3oLdX2UKGgGR0CaXJDn/1g6aAdN6ANoCEdAq4SEcjqv/3V9lChoBkdAmItsGHHmzWgHTegDaAhHQKuJUMWGh251fZQoaAZHQJulQ/t6X0JoB03oA2gIR0CrjN/+85CGdX2UKGgGR0CaCDZeRgZ1aAdN6ANoCEdAq4+K1G9YfXV9lChoBkdAmI+7HMlkY2gHTegDaAhHQKuS25IYm9h1fZQoaAZHQJvb6xs2vStoB03oA2gIR0CrlhJV0cOtdX2UKGgGR0Cb3PggHNX6aAdN6ANoCEdAq5ixuCPIXHV9lChoBkdAmnnbM1TBImgHTegDaAhHQKubXFxXGOx1fZQoaAZHQJWtRKFqSHNoB03oA2gIR0CrnqrGJemfdX2UKGgGR0CXu0jCYTkAaAdN6ANoCEdAq6K3yup0fnV9lChoBkdAl6bWaDwpfGgHTegDaAhHQKumvx0dRzl1fZQoaAZHQJg4Om8/UvxoB03oA2gIR0CrqhpK8L8adX2UKGgGR0CXPk6lchTwaAdN6ANoCEdAq61f8ZUDMnV9lChoBkdAmSAkFbFCLWgHTegDaAhHQKuwidwvQF91fZQoaAZHQJhjblmvnr9oB03oA2gIR0Crs0DCP6sRdX2UKGgGR0CXxbU47zTXaAdN6ANoCEdAq7Xf4Kx9onV9lChoBkdAmP4U5U96kmgHTegDaAhHQKu5GqWC2+h1fZQoaAZHQJb6ezHCGetoB03oA2gIR0CrvEhU70WedX2UKGgGR0CV4/LZBcAzaAdN6ANoCEdAq7/y+evpyXV9lChoBkdAmIVeZ5Rj0GgHTegDaAhHQKvEHDqnm7t1fZQoaAZHQJgaXxb0OExoB03oA2gIR0Crx8qBmPHUdX2UKGgGR0CVeExXGOuJaAdN6ANoCEdAq8r0OoYNzHV9lChoBkdAl62OVC5VfmgHTegDaAhHQKvNd+/gzgx1fZQoaAZHQJTtjhYNiH9oB03oA2gIR0Cr0BzhgmZ3dX2UKGgGR0CWPX238XN1aAdN6ANoCEdAq9Nh8KG+K3V9lChoBkdAk9GY6nzg/GgHTegDaAhHQKvWhEqDsdF1fZQoaAZHQJUi0IE8q4JoB03oA2gIR0Cr2RsySFGodX2UKGgGR0CVmNrj5sTGaAdN6ANoCEdAq90I6QvHtHV9lChoBkdAlw2ZFLFn7GgHTegDaAhHQKvh3g62fCh1fZQoaAZHQJb1E6jnFHdoB03oA2gIR0Cr5RQM6RyPdX2UKGgGR0CV/3R0U47zaAdN6ANoCEdAq+ek/+sHSnV9lChoBkdAmKDV72L5ymgHTegDaAhHQKvqR9mYjSp1fZQoaAZHQJTbcKVpsXVoB03oA2gIR0Cr7ZEeQuEmdX2UKGgGR0CWWgNtqHoHaAdN6ANoCEdAq/D4Hoouw3V9lChoBkdAlMNlWCEpRWgHTegDaAhHQKvzktuk1uR1fZQoaAZHQJRQfGecx0xoB03oA2gIR0Cr9rKH446wdX2UKGgGR0CVVMH4XXRPaAdN6ANoCEdAq/uigqVhTnV9lChoBkdAlmMMA3kxRGgHTegDaAhHQKv/ehpxm051fZQoaAZHQJS6g6r/82toB03oA2gIR0CsAf0NBnjAdX2UKGgGR0CUpL3Dej20aAdN6ANoCEdArASqE12q1nV9lChoBkdAl3GxWLgn+mgHTegDaAhHQKwH5N0NjLB1fZQoaAZHQJO8jo3aSLZoB03oA2gIR0CsCxh0p3HJdX2UKGgGR0CTEFfDk2gnaAdN6ANoCEdArA21+1Bt13V9lChoBkdAliYnrMTviWgHTegDaAhHQKwQa4J/oaF1fZQoaAZHQJRZ4NDtw71oB03oA2gIR0CsFKV1wHZ9dX2UKGgGR0CVNNVJL/S6aAdN6ANoCEdArBmuLJjlP3V9lChoBkdAl1tfXsgMdGgHTegDaAhHQKwcaMAmzB11fZQoaAZHQJH2CtITXatoB03oA2gIR0CsHyAM+eOGdX2UKGgGR0CDPuRODaoNaAdN3wFoCEdArB+BWNm16XV9lChoBkdAlwUfpIMBqGgHTegDaAhHQKwifg75mAd1fZQoaAZHQJc7oMiKR+1oB03oA2gIR0CsKD4Y77sOdX2UKGgGR0CTF6ZIQOFyaAdN6ANoCEdArCr78k2P1nV9lChoBkdAlv3mzSkTH2gHTegDaAhHQKwraOc2BJ91fZQoaAZHQJD1ctwrDqJoB03oA2gIR0CsLo/29L6DdX2UKGgGR0CN12NCqp97aAdN6ANoCEdArDcUZBLPEHV9lChoBkdAloP3HvMKTmgHTegDaAhHQKw5voFFDv51fZQoaAZHQJNx5mwqy4ZoB03oA2gIR0CsOhjLjghsdX2UKGgGR0CXJyb/Ot4iaAdN6ANoCEdArDz2tW+49XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb80406de8017acc242db1b2e480d9a664b5943db9fd4666c28c948674008979
3
+ size 1188361
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1601.302807930438, "std_reward": 103.62665177690259, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-01T09:44:56.930030"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:376589bd9a3ad852af4a12b6cc3aebc4e8ccea0a0c50182cd3244e05d5e19541
3
+ size 2136