update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- new_dataset
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-base-finetuned-manthan_base
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# wav2vec2-base-finetuned-manthan_base
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the new_dataset dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.2246
|
22 |
+
- Accuracy: 0.9691
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 3e-05
|
42 |
+
- train_batch_size: 32
|
43 |
+
- eval_batch_size: 32
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 4
|
46 |
+
- total_train_batch_size: 128
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 10
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
56 |
+
| 2.4725 | 0.98 | 12 | 2.4222 | 0.1057 |
|
57 |
+
| 2.4501 | 1.98 | 24 | 2.2420 | 0.2784 |
|
58 |
+
| 2.2977 | 2.98 | 36 | 2.0155 | 0.7603 |
|
59 |
+
| 2.1331 | 3.98 | 48 | 1.8193 | 0.8582 |
|
60 |
+
| 1.7927 | 4.98 | 60 | 1.6376 | 0.9459 |
|
61 |
+
| 1.7226 | 5.98 | 72 | 1.4940 | 0.9613 |
|
62 |
+
| 1.6036 | 6.98 | 84 | 1.3632 | 0.9665 |
|
63 |
+
| 1.5181 | 7.98 | 96 | 1.2963 | 0.9562 |
|
64 |
+
| 1.4384 | 8.98 | 108 | 1.2406 | 0.9742 |
|
65 |
+
| 1.3339 | 9.98 | 120 | 1.2246 | 0.9691 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.19.0
|
71 |
+
- Pytorch 1.11.0+cu113
|
72 |
+
- Datasets 1.14.0
|
73 |
+
- Tokenizers 0.12.1
|