manbeast3b commited on
Commit
a62ae6c
·
verified ·
1 Parent(s): 5f85b74

Update src/utils.py

Browse files
Files changed (1) hide show
  1. src/utils.py +1 -51
src/utils.py CHANGED
@@ -2,7 +2,6 @@
2
 
3
  import imp
4
  import numpy as np
5
- import cv2
6
  import torch
7
  import random
8
  from PIL import Image, ImageDraw, ImageFont
@@ -207,18 +206,6 @@ def load_512(image_path, left=0, right=0, top=0, bottom=0):
207
  image = np.array(Image.fromarray(image).resize((512, 512)))
208
  return image
209
 
210
- def get_canny(image_path):
211
- image = load_512(
212
- image_path
213
- )
214
- image = np.array(image)
215
-
216
- # get canny image
217
- image = cv2.Canny(image, 100, 200)
218
- image = image[:, :, None]
219
- image = np.concatenate([image, image, image], axis=2)
220
- canny_image = Image.fromarray(image)
221
- return canny_image
222
 
223
 
224
  def get_scribble(image_path, hed):
@@ -229,44 +216,7 @@ def get_scribble(image_path, hed):
229
 
230
  return image
231
 
232
- def get_cocoimages(prompt_path):
233
- data_ls = []
234
- with open(prompt_path) as f:
235
- prompt_ls = json.load(f)
236
- img_path = 'COCO2017-val/val2017'
237
- for prompt in tqdm(prompt_ls):
238
- caption = prompt['caption'].replace('/','_')
239
- image_id = str(prompt['image_id'])
240
- image_id = (12-len(image_id))*'0' + image_id+'.jpg'
241
- image_path = os.path.join(img_path, image_id)
242
- try:
243
- image = get_canny(image_path)
244
- except:
245
- continue
246
- curr_data = {'image':image, 'prompt':caption}
247
- data_ls.append(curr_data)
248
- return data_ls
249
-
250
- def get_cocoimages2(prompt_path):
251
- """scribble condition
252
- """
253
- data_ls = []
254
- with open(prompt_path) as f:
255
- prompt_ls = json.load(f)
256
- img_path = 'COCO2017-val/val2017'
257
- hed = HEDdetector.from_pretrained('ControlNet/detector_weights/annotator', filename='network-bsds500.pth')
258
- for prompt in tqdm(prompt_ls):
259
- caption = prompt['caption'].replace('/','_')
260
- image_id = str(prompt['image_id'])
261
- image_id = (12-len(image_id))*'0' + image_id+'.jpg'
262
- image_path = os.path.join(img_path, image_id)
263
- try:
264
- image = get_scribble(image_path,hed)
265
- except:
266
- continue
267
- curr_data = {'image':image, 'prompt':caption}
268
- data_ls.append(curr_data)
269
- return data_ls
270
 
271
  def warpped_feature(sample, step):
272
  """
 
2
 
3
  import imp
4
  import numpy as np
 
5
  import torch
6
  import random
7
  from PIL import Image, ImageDraw, ImageFont
 
206
  image = np.array(Image.fromarray(image).resize((512, 512)))
207
  return image
208
 
 
 
 
 
 
 
 
 
 
 
 
 
209
 
210
 
211
  def get_scribble(image_path, hed):
 
216
 
217
  return image
218
 
219
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220
 
221
  def warpped_feature(sample, step):
222
  """