|
from diffusers import ( |
|
DiffusionPipeline, |
|
AutoencoderKL, |
|
FluxPipeline, |
|
FluxTransformer2DModel |
|
) |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
from huggingface_hub.constants import HF_HUB_CACHE |
|
from transformers import ( |
|
T5EncoderModel, |
|
T5TokenizerFast, |
|
CLIPTokenizer, |
|
CLIPTextModel |
|
) |
|
import torch |
|
import torch._dynamo |
|
import gc |
|
from PIL import Image |
|
from pipelines.models import TextToImageRequest |
|
from torch import Generator |
|
import time |
|
import math |
|
from typing import Type, Dict, Any, Tuple, Callable, Optional, Union |
|
import numpy as np |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torchao.quantization import quantize_, float8_weight_only, int8_dynamic_activation_int4_weight |
|
|
|
|
|
import inspect |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
import numpy as np |
|
import torch |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPTextModel, |
|
CLIPTokenizer, |
|
CLIPVisionModelWithProjection, |
|
T5EncoderModel, |
|
T5TokenizerFast, |
|
) |
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin |
|
from diffusers.models import AutoencoderKL, FluxTransformer2DModel |
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
is_torch_xla_available, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput |
|
|
|
import torch.utils.benchmark as benchmark |
|
|
|
import os |
|
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True" |
|
os.environ["TOKENIZERS_PARALLELISM"] = "True" |
|
torch._dynamo.config.suppress_errors = True |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.enabled = True |
|
|
|
|
|
|
|
Pipeline = None |
|
ckpt_id = "manbeast3b/flux.1-schnell-full1" |
|
ckpt_revision = "cb1b599b0d712b9aab2c4df3ad27b050a27ec146" |
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
def calculate_shift( |
|
image_seq_len, |
|
base_seq_len: int = 256, |
|
max_seq_len: int = 4096, |
|
base_shift: float = 0.5, |
|
max_shift: float = 1.16, |
|
): |
|
m = (max_shift - base_shift) / (max_seq_len - base_seq_len) |
|
b = base_shift - m * base_seq_len |
|
mu = image_seq_len * m + b |
|
return mu |
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
sigmas: Optional[List[float]] = None, |
|
**kwargs, |
|
): |
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
elif sigmas is not None: |
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accept_sigmas: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class FluxPipeline( |
|
DiffusionPipeline, |
|
FluxLoraLoaderMixin, |
|
FromSingleFileMixin, |
|
TextualInversionLoaderMixin, |
|
FluxIPAdapterMixin, |
|
): |
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae" |
|
_optional_components = ["image_encoder", "feature_extractor"] |
|
_callback_tensor_inputs = ["latents", "prompt_embeds"] |
|
|
|
def __init__( |
|
self, |
|
scheduler: FlowMatchEulerDiscreteScheduler, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
text_encoder_2: T5EncoderModel, |
|
tokenizer_2: T5TokenizerFast, |
|
transformer: FluxTransformer2DModel, |
|
image_encoder: CLIPVisionModelWithProjection = None, |
|
feature_extractor: CLIPImageProcessor = None, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
transformer=transformer, |
|
scheduler=scheduler, |
|
image_encoder=image_encoder, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 |
|
|
|
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) |
|
self.tokenizer_max_length = ( |
|
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 |
|
) |
|
self.default_sample_size = 128 |
|
|
|
def _get_t5_prompt_embeds( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
num_images_per_prompt: int = 1, |
|
max_sequence_length: int = 512, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
): |
|
device = device or self._execution_device |
|
dtype = dtype or self.text_encoder.dtype |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2) |
|
|
|
text_inputs = self.tokenizer_2( |
|
prompt, |
|
padding="max_length", |
|
max_length=max_sequence_length, |
|
truncation=True, |
|
return_length=False, |
|
return_overflowing_tokens=False, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because `max_sequence_length` is set to " |
|
f" {max_sequence_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] |
|
|
|
dtype = self.text_encoder_2.dtype |
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
_, seq_len, _ = prompt_embeds.shape |
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
return prompt_embeds |
|
|
|
def _get_clip_prompt_embeds( |
|
self, |
|
prompt: Union[str, List[str]], |
|
num_images_per_prompt: int = 1, |
|
device: Optional[torch.device] = None, |
|
): |
|
device = device or self._execution_device |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer_max_length, |
|
truncation=True, |
|
return_overflowing_tokens=False, |
|
return_length=False, |
|
return_tensors="pt", |
|
) |
|
|
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer_max_length} tokens: {removed_text}" |
|
) |
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) |
|
|
|
|
|
prompt_embeds = prompt_embeds.pooler_output |
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) |
|
|
|
return prompt_embeds |
|
|
|
def encode_prompt( |
|
self, |
|
prompt: Union[str, List[str]], |
|
prompt_2: Union[str, List[str]], |
|
device: Optional[torch.device] = None, |
|
num_images_per_prompt: int = 1, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
max_sequence_length: int = 512, |
|
lora_scale: Optional[float] = None, |
|
): |
|
device = device or self._execution_device |
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if self.text_encoder is not None and USE_PEFT_BACKEND: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
if self.text_encoder_2 is not None and USE_PEFT_BACKEND: |
|
scale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
|
if prompt_embeds is None: |
|
prompt_2 = prompt_2 or prompt |
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 |
|
|
|
|
|
pooled_prompt_embeds = self._get_clip_prompt_embeds( |
|
prompt=prompt, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
) |
|
prompt_embeds = self._get_t5_prompt_embeds( |
|
prompt=prompt_2, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
) |
|
|
|
if self.text_encoder is not None: |
|
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if self.text_encoder_2 is not None: |
|
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype |
|
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) |
|
|
|
return prompt_embeds, pooled_prompt_embeds, text_ids |
|
|
|
def encode_image(self, image, device, num_images_per_prompt): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
image_embeds = self.image_encoder(image).image_embeds |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
return image_embeds |
|
|
|
def prepare_ip_adapter_image_embeds( |
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt |
|
): |
|
image_embeds = [] |
|
if ip_adapter_image_embeds is None: |
|
if not isinstance(ip_adapter_image, list): |
|
ip_adapter_image = [ip_adapter_image] |
|
|
|
if len(ip_adapter_image) != len(self.transformer.encoder_hid_proj.image_projection_layers): |
|
raise ValueError( |
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.transformer.encoder_hid_proj.image_projection_layers)} IP Adapters." |
|
) |
|
|
|
for single_ip_adapter_image, image_proj_layer in zip( |
|
ip_adapter_image, self.transformer.encoder_hid_proj.image_projection_layers |
|
): |
|
single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1) |
|
|
|
image_embeds.append(single_image_embeds[None, :]) |
|
else: |
|
for single_image_embeds in ip_adapter_image_embeds: |
|
image_embeds.append(single_image_embeds) |
|
|
|
ip_adapter_image_embeds = [] |
|
for i, single_image_embeds in enumerate(image_embeds): |
|
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) |
|
single_image_embeds = single_image_embeds.to(device=device) |
|
ip_adapter_image_embeds.append(single_image_embeds) |
|
|
|
return ip_adapter_image_embeds |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
negative_prompt=None, |
|
negative_prompt_2=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
pooled_prompt_embeds=None, |
|
negative_pooled_prompt_embeds=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
max_sequence_length=None, |
|
): |
|
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: |
|
logger.warning( |
|
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" |
|
) |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt_2 is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): |
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
elif negative_prompt_2 is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." |
|
) |
|
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." |
|
) |
|
|
|
if max_sequence_length is not None and max_sequence_length > 512: |
|
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") |
|
|
|
@staticmethod |
|
def _prepare_latent_image_ids(batch_size, height, width, device, dtype): |
|
latent_image_ids = torch.zeros(height, width, 3) |
|
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] |
|
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :] |
|
|
|
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape |
|
|
|
latent_image_ids = latent_image_ids.reshape( |
|
latent_image_id_height * latent_image_id_width, latent_image_id_channels |
|
) |
|
|
|
return latent_image_ids.to(device=device, dtype=dtype) |
|
|
|
@staticmethod |
|
def _pack_latents(latents, batch_size, num_channels_latents, height, width): |
|
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) |
|
latents = latents.permute(0, 2, 4, 1, 3, 5) |
|
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) |
|
|
|
return latents |
|
|
|
@staticmethod |
|
def _unpack_latents(latents, height, width, vae_scale_factor): |
|
batch_size, num_patches, channels = latents.shape |
|
|
|
|
|
|
|
height = 2 * (int(height) // (vae_scale_factor * 2)) |
|
width = 2 * (int(width) // (vae_scale_factor * 2)) |
|
|
|
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) |
|
latents = latents.permute(0, 3, 1, 4, 2, 5) |
|
|
|
latents = latents.reshape(batch_size, channels // (2 * 2), height, width) |
|
|
|
return latents |
|
|
|
def enable_vae_slicing(self): |
|
self.vae.enable_slicing() |
|
|
|
def disable_vae_slicing(self): |
|
self.vae.disable_slicing() |
|
|
|
def enable_vae_tiling(self): |
|
self.vae.enable_tiling() |
|
|
|
def disable_vae_tiling(self): |
|
self.vae.disable_tiling() |
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
|
|
|
|
height = 2 * (int(height) // (self.vae_scale_factor * 2)) |
|
width = 2 * (int(width) // (self.vae_scale_factor * 2)) |
|
|
|
shape = (batch_size, num_channels_latents, height, width) |
|
|
|
if latents is not None: |
|
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) |
|
return latents.to(device=device, dtype=dtype), latent_image_ids |
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) |
|
|
|
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) |
|
|
|
return latents, latent_image_ids |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def joint_attention_kwargs(self): |
|
return self._joint_attention_kwargs |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def current_timestep(self): |
|
return self._current_timestep |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
negative_prompt: Union[str, List[str]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
true_cfg_scale: float = 1.0, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 28, |
|
sigmas: Optional[List[float]] = None, |
|
guidance_scale: float = 3.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, |
|
negative_ip_adapter_image: Optional[PipelineImageInput] = None, |
|
negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 512, |
|
): |
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._current_timestep = None |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
lora_scale = ( |
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None |
|
) |
|
has_neg_prompt = negative_prompt is not None or ( |
|
negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None |
|
) |
|
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt |
|
( |
|
prompt_embeds, |
|
pooled_prompt_embeds, |
|
text_ids, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
if do_true_cfg: |
|
( |
|
negative_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
_, |
|
) = self.encode_prompt( |
|
prompt=negative_prompt, |
|
prompt_2=negative_prompt_2, |
|
prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
|
|
num_channels_latents = 16 |
|
latents, latent_image_ids = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas |
|
image_seq_len = latents.shape[1] |
|
mu = calculate_shift( |
|
image_seq_len, |
|
self.scheduler.config.get("base_image_seq_len", 256), |
|
self.scheduler.config.get("max_image_seq_len", 4096), |
|
self.scheduler.config.get("base_shift", 0.5), |
|
self.scheduler.config.get("max_shift", 1.16), |
|
) |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
sigmas=sigmas, |
|
mu=mu, |
|
) |
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
if False: |
|
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) |
|
guidance = guidance.expand(latents.shape[0]) |
|
else: |
|
guidance = None |
|
|
|
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and ( |
|
negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None |
|
): |
|
negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) |
|
elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and ( |
|
negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None |
|
): |
|
ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) |
|
|
|
if self.joint_attention_kwargs is None: |
|
self._joint_attention_kwargs = {} |
|
|
|
image_embeds = None |
|
negative_image_embeds = None |
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: |
|
image_embeds = self.prepare_ip_adapter_image_embeds( |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt, |
|
) |
|
if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None: |
|
negative_image_embeds = self.prepare_ip_adapter_image_embeds( |
|
negative_ip_adapter_image, |
|
negative_ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt, |
|
) |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
self._current_timestep = t |
|
if image_embeds is not None: |
|
self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds |
|
|
|
timestep = t.expand(latents.shape[0]).to(latents.dtype) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latents, |
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=pooled_prompt_embeds, |
|
encoder_hidden_states=prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
if do_true_cfg: |
|
if negative_image_embeds is not None: |
|
self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds |
|
neg_noise_pred = self.transformer( |
|
hidden_states=latents, |
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=negative_pooled_prompt_embeds, |
|
encoder_hidden_states=negative_prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) |
|
|
|
|
|
latents_dtype = latents.dtype |
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
|
|
self._current_timestep = None |
|
|
|
if output_type == "latent": |
|
image = latents |
|
else: |
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return FluxPipelineOutput(images=image) |
|
|
|
|
|
@torch.no_grad() |
|
def f(model, **kwargs): |
|
return model(**kwargs) |
|
|
|
def prepare_latents(batch_size, height, width, num_channels_latents=1): |
|
vae_scale_factor = 16 |
|
height = 2 * (int(height) // vae_scale_factor) |
|
width = 2 * (int(width) // vae_scale_factor) |
|
shape = (batch_size, num_channels_latents, height, width) |
|
pre_hidden_states = torch.randn(shape, dtype=torch.bfloat16, device="cuda") |
|
hidden_states = FluxPipeline._pack_latents( |
|
pre_hidden_states, batch_size, num_channels_latents, height, width |
|
) |
|
return hidden_states |
|
|
|
def get_example_inputs(batch_size, height, width, num_channels_latents=1): |
|
hidden_states = prepare_latents(batch_size, height, width, num_channels_latents) |
|
num_img_sequences = hidden_states.shape[1] |
|
example_inputs = { |
|
"hidden_states": hidden_states, |
|
"encoder_hidden_states": torch.randn(batch_size, 512, 4096, dtype=torch.bfloat16, device="cuda"), |
|
"pooled_projections": torch.randn(batch_size, 768, dtype=torch.bfloat16, device="cuda"), |
|
"timestep": torch.tensor([1.0], device="cuda").expand(batch_size), |
|
"img_ids": torch.randn(num_img_sequences, 3, dtype=torch.bfloat16, device="cuda"), |
|
"txt_ids": torch.randn(512, 3, dtype=torch.bfloat16, device="cuda"), |
|
"guidance": torch.tensor([3.5], device="cuda").expand(batch_size), |
|
"return_dict": False, |
|
} |
|
example_inputs.update({"joint_attention_kwargs": None, "return_dict": False}) |
|
example_inputs.update({"guidance": None}) |
|
return example_inputs |
|
|
|
def get_example_inputs(): |
|
example_inputs = torch.load("/root/.cache/huggingface/hub/models--sayakpaul--flux.1-dev-int8-aot-compiled/snapshots/3b4f77e9752dd278c432870d101b958c902af2c9/serialized_inputs.pt", weights_only=True) |
|
example_inputs = {k: v.to("cuda") for k, v in example_inputs.items()} |
|
example_inputs.update({"joint_attention_kwargs": None, "return_dict": False}) |
|
example_inputs.update({"guidance": None}) |
|
return example_inputs |
|
|
|
def benchmark_fn(f, *args, **kwargs): |
|
t0 = benchmark.Timer( |
|
stmt="f(*args, **kwargs)", |
|
globals={"args": args, "kwargs": kwargs, "f": f}, |
|
num_threads=torch.get_num_threads(), |
|
) |
|
return f"{(t0.blocked_autorange().mean):.3f}" |
|
|
|
|
|
def load_pipeline() -> Pipeline: |
|
model_name = "manbeast3b/Flux.1.Schnell-full-quant1" |
|
revision = "e7ddf488a4ea8a3cba05db5b8d06e7e0feb826a2" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipeline = FluxPipeline.from_pretrained( |
|
ckpt_id, |
|
revision=ckpt_revision, |
|
|
|
transformer=None, |
|
|
|
torch_dtype=torch.bfloat16 |
|
) |
|
|
|
pipeline.to("cuda") |
|
|
|
path = os.path.join(HF_HUB_CACHE, "models--manbeast3b--Flux.1.la_schnella_transformer_aot/snapshots/56fa3ac58c770179f25f2453500a5160f1423b6c/flux_la_schnell_aten.so.pt2") |
|
inputs1 = get_example_inputs() |
|
print(f"AoT pre compiled path is {path}") |
|
|
|
|
|
transformer = torch._inductor.aoti_load_package(path) |
|
print(f"{transformer(**inputs1)[0].shape=}") |
|
|
|
for _ in range(3): |
|
_ = transformer(**inputs1)[0] |
|
|
|
time = benchmark_fn(f, transformer, **inputs1) |
|
print(f"{time=} seconds.") |
|
|
|
pipeline.transformer = transformer |
|
|
|
warmup_ = "controllable varied focus thai warriors entertainment blue golden pink soft tough padthai" |
|
for _ in range(1): |
|
pipeline( |
|
prompt=warmup_, |
|
width=1024, |
|
height=1024, |
|
guidance_scale=0.0, |
|
num_inference_steps=4, |
|
max_sequence_length=256 |
|
) |
|
return pipeline |
|
|
|
sample = 1 |
|
@torch.no_grad() |
|
def infer(request: TextToImageRequest, pipeline: Pipeline, generator: Generator) -> Image: |
|
global sample |
|
if not sample: |
|
sample=1 |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
return pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, |
|
height=request.height, width=request.width, output_type="pil").images[0] |