manalsultan commited on
Commit
d2f9a29
·
1 Parent(s): 0747872

Upload 13 files

Browse files
README.md ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ widget:
4
+ - src: >-
5
+ https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png
6
+ candidate_labels: playing music, playing sports
7
+ example_title: Cat & Dog
8
+ library_name: open_clip
9
+ pipeline_tag: zero-shot-image-classification
10
+ ---
11
+ # Model Card for CLIP ViT-bigG/14 - LAION-2B
12
+
13
+ # Table of Contents
14
+
15
+ 1. [Model Details](#model-details)
16
+ 2. [Uses](#uses)
17
+ 3. [Training Details](#training-details)
18
+ 4. [Evaluation](#evaluation)
19
+ 5. [Acknowledgements](#acknowledgements)
20
+ 6. [Citation](#citation)
21
+ 7. [How To Get Started With the Model](#how-to-get-started-with-the-model)
22
+
23
+
24
+ # Model Details
25
+
26
+ ## Model Description
27
+
28
+ A CLIP ViT-bigG/14 model trained with the LAION-2B English subset of LAION-5B (https://laion.ai/blog/laion-5b/) using OpenCLIP (https://github.com/mlfoundations/open_clip).
29
+
30
+ Model training done by Mitchell Wortsman on the [stability.ai](https://stability.ai/) cluster.
31
+
32
+ The license for this model is MIT.
33
+
34
+ # Uses
35
+
36
+ As per the original [OpenAI CLIP model card](https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/model-card.md), this model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such model.
37
+
38
+ The OpenAI CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis. Additionally, the LAION-5B blog (https://laion.ai/blog/laion-5b/) and upcoming paper include additional discussion as it relates specifically to the training dataset.
39
+
40
+ ## Direct Use
41
+
42
+ Zero-shot image classification, image and text retrieval, among others.
43
+
44
+ ## Downstream Use
45
+
46
+ Image classification and other image task fine-tuning, linear probe image classification, image generation guiding and conditioning, among others.
47
+
48
+ ## Out-of-Scope Use
49
+
50
+ As per the OpenAI models,
51
+
52
+ **Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful.
53
+
54
+ Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use.
55
+
56
+ Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases.
57
+
58
+ Further the above notice, the LAION-5B dataset used in training of these models has additional considerations, see below.
59
+
60
+ # Training Details
61
+
62
+ ## Training Data
63
+
64
+ This model was trained with the 2 Billion sample English subset of LAION-5B (https://laion.ai/blog/laion-5b/).
65
+ Fine-tuning was also partially done on LAION-A, a 900M subset of LAION-2B filtered with aesthetic V2 4.5+ and phash deduplicated.
66
+
67
+ **IMPORTANT NOTE:** The motivation behind dataset creation is to democratize research and experimentation around large-scale multi-modal model training and handling of uncurated, large-scale datasets crawled from publically available internet. Our recommendation is therefore to use the dataset for research purposes. Be aware that this large-scale dataset is uncurated. Keep in mind that the uncurated nature of the dataset means that collected links may lead to strongly discomforting and disturbing content for a human viewer. Therefore, please use the demo links with caution and at your own risk. It is possible to extract a “safe” subset by filtering out samples based on the safety tags (using a customized trained NSFW classifier that we built). While this strongly reduces the chance for encountering potentially harmful content when viewing, we cannot entirely exclude the possibility for harmful content being still present in safe mode, so that the warning holds also there. We think that providing the dataset openly to broad research and other interested communities will allow for transparent investigation of benefits that come along with training large-scale models as well as pitfalls and dangers that may stay unreported or unnoticed when working with closed large datasets that remain restricted to a small community. Providing our dataset openly, we however do not recommend using it for creating ready-to-go industrial products, as the basic research about general properties and safety of such large-scale models, which we would like to encourage with this release, is still in progress.
68
+
69
+ ## Training Procedure
70
+
71
+ The training procedure will soon be discussed by a blog post on laion.ai.
72
+
73
+ # Evaluation
74
+
75
+ Evaluation done with code in the [LAION CLIP Benchmark suite](https://github.com/LAION-AI/CLIP_benchmark).
76
+
77
+ ## Testing Data, Factors & Metrics
78
+
79
+ ### Testing Data
80
+
81
+ The testing is performed with VTAB+ (A combination of VTAB (https://arxiv.org/abs/1910.04867) w/ additional robustness datasets) for classification and COCO and Flickr for retrieval.
82
+
83
+ **TODO** - more detail
84
+
85
+ ## Results
86
+
87
+ The model achieves a 80.1 zero-shot top-1 accuracy on ImageNet-1k.
88
+
89
+ An initial round of benchmarks have been performed on a wider range of datasets, and will soon be visible at https://github.com/LAION-AI/CLIP_benchmark/blob/main/benchmark/results.ipynb
90
+
91
+ **TODO** - create table for just this model's metrics.
92
+
93
+ # Acknowledgements
94
+
95
+ Acknowledging [stability.ai](https://stability.ai/) for the compute used to train this model.
96
+
97
+ # Citation
98
+
99
+ **BibTeX:**
100
+
101
+ LAION-5B
102
+ ```bibtex
103
+ @inproceedings{schuhmann2022laionb,
104
+ title={{LAION}-5B: An open large-scale dataset for training next generation image-text models},
105
+ author={Christoph Schuhmann and
106
+ Romain Beaumont and
107
+ Richard Vencu and
108
+ Cade W Gordon and
109
+ Ross Wightman and
110
+ Mehdi Cherti and
111
+ Theo Coombes and
112
+ Aarush Katta and
113
+ Clayton Mullis and
114
+ Mitchell Wortsman and
115
+ Patrick Schramowski and
116
+ Srivatsa R Kundurthy and
117
+ Katherine Crowson and
118
+ Ludwig Schmidt and
119
+ Robert Kaczmarczyk and
120
+ Jenia Jitsev},
121
+ booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
122
+ year={2022},
123
+ url={https://openreview.net/forum?id=M3Y74vmsMcY}
124
+ }
125
+ ```
126
+
127
+ OpenAI CLIP paper
128
+ ```
129
+ @inproceedings{Radford2021LearningTV,
130
+ title={Learning Transferable Visual Models From Natural Language Supervision},
131
+ author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
132
+ booktitle={ICML},
133
+ year={2021}
134
+ }
135
+ ```
136
+
137
+ OpenCLIP software
138
+ ```
139
+ @software{ilharco_gabriel_2021_5143773,
140
+ author = {Ilharco, Gabriel and
141
+ Wortsman, Mitchell and
142
+ Wightman, Ross and
143
+ Gordon, Cade and
144
+ Carlini, Nicholas and
145
+ Taori, Rohan and
146
+ Dave, Achal and
147
+ Shankar, Vaishaal and
148
+ Namkoong, Hongseok and
149
+ Miller, John and
150
+ Hajishirzi, Hannaneh and
151
+ Farhadi, Ali and
152
+ Schmidt, Ludwig},
153
+ title = {OpenCLIP},
154
+ month = jul,
155
+ year = 2021,
156
+ note = {If you use this software, please cite it as below.},
157
+ publisher = {Zenodo},
158
+ version = {0.1},
159
+ doi = {10.5281/zenodo.5143773},
160
+ url = {https://doi.org/10.5281/zenodo.5143773}
161
+ }
162
+ ```
163
+
164
+ Scaling OpenCLIP paper
165
+ ```
166
+ @article{cherti2022reproducible,
167
+ title={Reproducible scaling laws for contrastive language-image learning},
168
+ author={Cherti, Mehdi and Beaumont, Romain and Wightman, Ross and Wortsman, Mitchell and Ilharco, Gabriel and Gordon, Cade and Schuhmann, Christoph and Schmidt, Ludwig and Jitsev, Jenia},
169
+ journal={arXiv preprint arXiv:2212.07143},
170
+ year={2022}
171
+ }
172
+ ```
173
+
174
+ # How to Get Started with the Model
175
+
176
+ Use the code below to get started with the model.
177
+
178
+ ** TODO ** - Hugging Face transformers, OpenCLIP, and timm getting started snippets
config.json ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "CLIPModel"
5
+ ],
6
+ "initializer_factor": 1.0,
7
+ "logit_scale_init_value": 2.6592,
8
+ "model_type": "clip",
9
+ "projection_dim": 1280,
10
+ "text_config": {
11
+ "_name_or_path": "",
12
+ "add_cross_attention": false,
13
+ "architectures": null,
14
+ "attention_dropout": 0.0,
15
+ "bad_words_ids": null,
16
+ "begin_suppress_tokens": null,
17
+ "bos_token_id": 0,
18
+ "chunk_size_feed_forward": 0,
19
+ "cross_attention_hidden_size": null,
20
+ "decoder_start_token_id": null,
21
+ "diversity_penalty": 0.0,
22
+ "do_sample": false,
23
+ "dropout": 0.0,
24
+ "early_stopping": false,
25
+ "encoder_no_repeat_ngram_size": 0,
26
+ "eos_token_id": 2,
27
+ "exponential_decay_length_penalty": null,
28
+ "finetuning_task": null,
29
+ "forced_bos_token_id": null,
30
+ "forced_eos_token_id": null,
31
+ "hidden_act": "gelu",
32
+ "hidden_size": 1280,
33
+ "id2label": {
34
+ "0": "LABEL_0",
35
+ "1": "LABEL_1"
36
+ },
37
+ "initializer_factor": 1.0,
38
+ "initializer_range": 0.02,
39
+ "intermediate_size": 5120,
40
+ "is_decoder": false,
41
+ "is_encoder_decoder": false,
42
+ "label2id": {
43
+ "LABEL_0": 0,
44
+ "LABEL_1": 1
45
+ },
46
+ "layer_norm_eps": 1e-05,
47
+ "length_penalty": 1.0,
48
+ "max_length": 20,
49
+ "max_position_embeddings": 77,
50
+ "min_length": 0,
51
+ "model_type": "clip_text_model",
52
+ "no_repeat_ngram_size": 0,
53
+ "num_attention_heads": 20,
54
+ "num_beam_groups": 1,
55
+ "num_beams": 1,
56
+ "num_hidden_layers": 32,
57
+ "num_return_sequences": 1,
58
+ "output_attentions": false,
59
+ "output_hidden_states": false,
60
+ "output_scores": false,
61
+ "pad_token_id": 1,
62
+ "prefix": null,
63
+ "problem_type": null,
64
+ "pruned_heads": {},
65
+ "remove_invalid_values": false,
66
+ "repetition_penalty": 1.0,
67
+ "return_dict": true,
68
+ "return_dict_in_generate": false,
69
+ "sep_token_id": null,
70
+ "suppress_tokens": null,
71
+ "task_specific_params": null,
72
+ "temperature": 1.0,
73
+ "tf_legacy_loss": false,
74
+ "tie_encoder_decoder": false,
75
+ "tie_word_embeddings": true,
76
+ "tokenizer_class": null,
77
+ "top_k": 50,
78
+ "top_p": 1.0,
79
+ "torch_dtype": null,
80
+ "torchscript": false,
81
+ "transformers_version": "4.24.0",
82
+ "typical_p": 1.0,
83
+ "use_bfloat16": false,
84
+ "vocab_size": 49408
85
+ },
86
+ "text_config_dict": {
87
+ "hidden_act": "gelu",
88
+ "hidden_size": 1280,
89
+ "intermediate_size": 5120,
90
+ "num_attention_heads": 20,
91
+ "num_hidden_layers": 32
92
+ },
93
+ "torch_dtype": "float32",
94
+ "transformers_version": null,
95
+ "vision_config": {
96
+ "_name_or_path": "",
97
+ "add_cross_attention": false,
98
+ "architectures": null,
99
+ "attention_dropout": 0.0,
100
+ "bad_words_ids": null,
101
+ "begin_suppress_tokens": null,
102
+ "bos_token_id": null,
103
+ "chunk_size_feed_forward": 0,
104
+ "cross_attention_hidden_size": null,
105
+ "decoder_start_token_id": null,
106
+ "diversity_penalty": 0.0,
107
+ "do_sample": false,
108
+ "dropout": 0.0,
109
+ "early_stopping": false,
110
+ "encoder_no_repeat_ngram_size": 0,
111
+ "eos_token_id": null,
112
+ "exponential_decay_length_penalty": null,
113
+ "finetuning_task": null,
114
+ "forced_bos_token_id": null,
115
+ "forced_eos_token_id": null,
116
+ "hidden_act": "gelu",
117
+ "hidden_size": 1664,
118
+ "id2label": {
119
+ "0": "LABEL_0",
120
+ "1": "LABEL_1"
121
+ },
122
+ "image_size": 224,
123
+ "initializer_factor": 1.0,
124
+ "initializer_range": 0.02,
125
+ "intermediate_size": 8192,
126
+ "is_decoder": false,
127
+ "is_encoder_decoder": false,
128
+ "label2id": {
129
+ "LABEL_0": 0,
130
+ "LABEL_1": 1
131
+ },
132
+ "layer_norm_eps": 1e-05,
133
+ "length_penalty": 1.0,
134
+ "max_length": 20,
135
+ "min_length": 0,
136
+ "model_type": "clip_vision_model",
137
+ "no_repeat_ngram_size": 0,
138
+ "num_attention_heads": 16,
139
+ "num_beam_groups": 1,
140
+ "num_beams": 1,
141
+ "num_channels": 3,
142
+ "num_hidden_layers": 48,
143
+ "num_return_sequences": 1,
144
+ "output_attentions": false,
145
+ "output_hidden_states": false,
146
+ "output_scores": false,
147
+ "pad_token_id": null,
148
+ "patch_size": 14,
149
+ "prefix": null,
150
+ "problem_type": null,
151
+ "pruned_heads": {},
152
+ "remove_invalid_values": false,
153
+ "repetition_penalty": 1.0,
154
+ "return_dict": true,
155
+ "return_dict_in_generate": false,
156
+ "sep_token_id": null,
157
+ "suppress_tokens": null,
158
+ "task_specific_params": null,
159
+ "temperature": 1.0,
160
+ "tf_legacy_loss": false,
161
+ "tie_encoder_decoder": false,
162
+ "tie_word_embeddings": true,
163
+ "tokenizer_class": null,
164
+ "top_k": 50,
165
+ "top_p": 1.0,
166
+ "torch_dtype": null,
167
+ "torchscript": false,
168
+ "transformers_version": "4.24.0",
169
+ "typical_p": 1.0,
170
+ "use_bfloat16": false
171
+ },
172
+ "vision_config_dict": {
173
+ "hidden_act": "gelu",
174
+ "hidden_size": 1664,
175
+ "intermediate_size": 8192,
176
+ "num_attention_heads": 16,
177
+ "num_hidden_layers": 48,
178
+ "patch_size": 14
179
+ }
180
+ }
gitattributes.txt ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ open_clip_pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
36
+ pytorch_model-00001-of-00002.bin filter=lfs diff=lfs merge=lfs -text
37
+ pytorch_model-00002-of-00002.bin filter=lfs diff=lfs merge=lfs -text
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
open_clip_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_cfg": {
3
+ "embed_dim": 1280,
4
+ "vision_cfg": {
5
+ "image_size": 224,
6
+ "layers": 48,
7
+ "width": 1664,
8
+ "head_width": 104,
9
+ "mlp_ratio": 4.9231,
10
+ "patch_size": 14
11
+ },
12
+ "text_cfg": {
13
+ "context_length": 77,
14
+ "vocab_size": 49408,
15
+ "width": 1280,
16
+ "heads": 20,
17
+ "layers": 32
18
+ }
19
+ },
20
+ "preprocess_cfg": {
21
+ "mean": [
22
+ 0.48145466,
23
+ 0.4578275,
24
+ 0.40821073
25
+ ],
26
+ "std": [
27
+ 0.26862954,
28
+ 0.26130258,
29
+ 0.27577711
30
+ ]
31
+ }
32
+ }
open_clip_pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d5318839ad03607c48055c45897c655a14c0276a79f6b867934ddd073760e39
3
+ size 10158638769
preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 224,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.48145466,
9
+ 0.4578275,
10
+ 0.40821073
11
+ ],
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "resample": 3,
18
+ "size": 224
19
+ }
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79cfbc5cb39085ce8eedff70562d3c54795abdccd132d6dcb8e1462fbd71a1a0
3
+ size 9990161549
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31847ed3e29dade79ab29eafc0f8230200ec46233ce1d8f6e71b987a9fbacf47
3
+ size 168539369
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": {"content": "<|startoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": "<|endoftext|>"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "unk_token": {
3
+ "content": "<|endoftext|>",
4
+ "single_word": false,
5
+ "lstrip": false,
6
+ "rstrip": false,
7
+ "normalized": true,
8
+ "__type": "AddedToken"
9
+ },
10
+ "bos_token": {
11
+ "content": "<|startoftext|>",
12
+ "single_word": false,
13
+ "lstrip": false,
14
+ "rstrip": false,
15
+ "normalized": true,
16
+ "__type": "AddedToken"
17
+ },
18
+ "eos_token": {
19
+ "content": "<|endoftext|>",
20
+ "single_word": false,
21
+ "lstrip": false,
22
+ "rstrip": false,
23
+ "normalized": true,
24
+ "__type": "AddedToken"
25
+ },
26
+ "pad_token": "<|endoftext|>",
27
+ "add_prefix_space": false,
28
+ "errors": "replace",
29
+ "do_lower_case": true,
30
+ "name_or_path": "openai/clip-vit-base-patch32",
31
+ "model_max_length": 77,
32
+ "special_tokens_map_file": "./special_tokens_map.json",
33
+ "tokenizer_class": "CLIPTokenizer"
34
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff