update model card README.md
Browse files
README.md
CHANGED
@@ -17,7 +17,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [Salesforce/codet5-base-multi-sum](https://huggingface.co/Salesforce/codet5-base-multi-sum) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 2.
|
21 |
- Rouge1: 0.0001
|
22 |
- Rouge2: 0.0
|
23 |
- Rougel: 0.0001
|
@@ -48,23 +48,31 @@ The following hyperparameters were used during training:
|
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
-
- num_epochs:
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
-
| Training Loss | Epoch | Step
|
56 |
-
|
57 |
-
| 3.
|
58 |
-
| 2.
|
59 |
-
| 2.
|
60 |
-
| 2.
|
61 |
-
| 2.
|
62 |
-
|
|
63 |
-
| 1.
|
64 |
-
| 1.
|
65 |
-
| 1.
|
66 |
-
| 1.
|
67 |
-
| 1.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
|
70 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [Salesforce/codet5-base-multi-sum](https://huggingface.co/Salesforce/codet5-base-multi-sum) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 2.7383
|
21 |
- Rouge1: 0.0001
|
22 |
- Rouge2: 0.0
|
23 |
- Rougel: 0.0001
|
|
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 100
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bleu |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|
|
57 |
+
| 3.2223 | 1.0 | 837 | 2.6672 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
|
58 |
+
| 2.6296 | 2.0 | 1674 | 2.5416 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
|
59 |
+
| 2.4155 | 3.0 | 2511 | 2.4725 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
|
60 |
+
| 2.2666 | 4.0 | 3348 | 2.4331 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
|
61 |
+
| 2.112 | 5.0 | 4185 | 2.4343 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
|
62 |
+
| 1.9833 | 6.0 | 5022 | 2.4283 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
|
63 |
+
| 1.8833 | 7.0 | 5859 | 2.4360 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
|
64 |
+
| 1.7778 | 8.0 | 6696 | 2.4457 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
|
65 |
+
| 1.6767 | 9.0 | 7533 | 2.4696 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
|
66 |
+
| 1.5805 | 10.0 | 8370 | 2.4829 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
|
67 |
+
| 1.4918 | 11.0 | 9207 | 2.5202 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
|
68 |
+
| 1.4137 | 12.0 | 10044 | 2.5357 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
|
69 |
+
| 1.3351 | 13.0 | 10881 | 2.5621 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
|
70 |
+
| 1.2533 | 14.0 | 11718 | 2.5992 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
|
71 |
+
| 1.1952 | 15.0 | 12555 | 2.6149 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
|
72 |
+
| 1.122 | 16.0 | 13392 | 2.6565 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
|
73 |
+
| 1.0543 | 17.0 | 14229 | 2.6823 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
|
74 |
+
| 1.0017 | 18.0 | 15066 | 2.7106 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
|
75 |
+
| 0.9437 | 19.0 | 15903 | 2.7383 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
|
76 |
|
77 |
|
78 |
### Framework versions
|