mamiksik commited on
Commit
d1972f2
1 Parent(s): a69e2e4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -34
README.md CHANGED
@@ -15,8 +15,8 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [microsoft/codebert-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) on the None dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 1.8796
19
- - Accuracy: 0.6381
20
 
21
  ## Model description
22
 
@@ -51,38 +51,38 @@ The following hyperparameters were used during training:
51
 
52
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
54
- | No log | 1.0 | 40 | 4.5229 | 0.3460 |
55
- | No log | 2.0 | 80 | 3.8419 | 0.3792 |
56
- | No log | 3.0 | 120 | 3.1830 | 0.4538 |
57
- | No log | 4.0 | 160 | 2.8435 | 0.5 |
58
- | No log | 5.0 | 200 | 2.6741 | 0.5126 |
59
- | No log | 6.0 | 240 | 2.6468 | 0.5211 |
60
- | No log | 7.0 | 280 | 2.4902 | 0.5431 |
61
- | No log | 8.0 | 320 | 2.4223 | 0.5590 |
62
- | No log | 9.0 | 360 | 2.3677 | 0.5625 |
63
- | No log | 10.0 | 400 | 2.3634 | 0.5654 |
64
- | No log | 11.0 | 440 | 2.3334 | 0.5693 |
65
- | No log | 12.0 | 480 | 2.1738 | 0.5963 |
66
- | 3.0595 | 13.0 | 520 | 2.2148 | 0.5882 |
67
- | 3.0595 | 14.0 | 560 | 2.2387 | 0.5878 |
68
- | 3.0595 | 15.0 | 600 | 2.1472 | 0.5938 |
69
- | 3.0595 | 16.0 | 640 | 2.1703 | 0.5963 |
70
- | 3.0595 | 17.0 | 680 | 2.1183 | 0.5937 |
71
- | 3.0595 | 18.0 | 720 | 2.1139 | 0.6035 |
72
- | 3.0595 | 19.0 | 760 | 2.0543 | 0.6106 |
73
- | 3.0595 | 20.0 | 800 | 2.0135 | 0.6148 |
74
- | 3.0595 | 21.0 | 840 | 2.0445 | 0.6119 |
75
- | 3.0595 | 22.0 | 880 | 1.9723 | 0.6221 |
76
- | 3.0595 | 23.0 | 920 | 1.9972 | 0.6205 |
77
- | 3.0595 | 24.0 | 960 | 1.9588 | 0.6280 |
78
- | 2.1206 | 25.0 | 1000 | 1.9563 | 0.6280 |
79
- | 2.1206 | 26.0 | 1040 | 1.9421 | 0.6254 |
80
- | 2.1206 | 27.0 | 1080 | 1.9820 | 0.6291 |
81
- | 2.1206 | 28.0 | 1120 | 1.8989 | 0.6315 |
82
- | 2.1206 | 29.0 | 1160 | 1.8743 | 0.6330 |
83
- | 2.1206 | 30.0 | 1200 | 1.8840 | 0.6389 |
84
- | 2.1206 | 31.0 | 1240 | 1.9038 | 0.6325 |
85
- | 2.1206 | 32.0 | 1280 | 1.8796 | 0.6381 |
86
 
87
 
88
  ### Framework versions
 
15
 
16
  This model is a fine-tuned version of [microsoft/codebert-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) on the None dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 1.8906
19
+ - Accuracy: 0.6346
20
 
21
  ## Model description
22
 
 
51
 
52
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
54
+ | No log | 1.0 | 40 | 4.5523 | 0.3432 |
55
+ | No log | 2.0 | 80 | 3.8711 | 0.3796 |
56
+ | No log | 3.0 | 120 | 3.2419 | 0.4503 |
57
+ | No log | 4.0 | 160 | 2.8709 | 0.4962 |
58
+ | No log | 5.0 | 200 | 2.6999 | 0.5085 |
59
+ | No log | 6.0 | 240 | 2.6622 | 0.5216 |
60
+ | No log | 7.0 | 280 | 2.5048 | 0.5410 |
61
+ | No log | 8.0 | 320 | 2.4249 | 0.5581 |
62
+ | No log | 9.0 | 360 | 2.3727 | 0.5623 |
63
+ | No log | 10.0 | 400 | 2.3625 | 0.5665 |
64
+ | No log | 11.0 | 440 | 2.3320 | 0.5706 |
65
+ | No log | 12.0 | 480 | 2.1704 | 0.5950 |
66
+ | 3.081 | 13.0 | 520 | 2.2109 | 0.5893 |
67
+ | 3.081 | 14.0 | 560 | 2.2330 | 0.5884 |
68
+ | 3.081 | 15.0 | 600 | 2.1454 | 0.5954 |
69
+ | 3.081 | 16.0 | 640 | 2.1740 | 0.5951 |
70
+ | 3.081 | 17.0 | 680 | 2.1219 | 0.5920 |
71
+ | 3.081 | 18.0 | 720 | 2.1136 | 0.6052 |
72
+ | 3.081 | 19.0 | 760 | 2.0586 | 0.6127 |
73
+ | 3.081 | 20.0 | 800 | 2.0185 | 0.6113 |
74
+ | 3.081 | 21.0 | 840 | 2.0493 | 0.6129 |
75
+ | 3.081 | 22.0 | 880 | 1.9766 | 0.6217 |
76
+ | 3.081 | 23.0 | 920 | 1.9968 | 0.6189 |
77
+ | 3.081 | 24.0 | 960 | 1.9567 | 0.6276 |
78
+ | 2.122 | 25.0 | 1000 | 1.9611 | 0.6269 |
79
+ | 2.122 | 26.0 | 1040 | 1.9437 | 0.6254 |
80
+ | 2.122 | 27.0 | 1080 | 1.9865 | 0.6266 |
81
+ | 2.122 | 28.0 | 1120 | 1.9112 | 0.6295 |
82
+ | 2.122 | 29.0 | 1160 | 1.8903 | 0.6292 |
83
+ | 2.122 | 30.0 | 1200 | 1.8992 | 0.6376 |
84
+ | 2.122 | 31.0 | 1240 | 1.9122 | 0.6327 |
85
+ | 2.122 | 32.0 | 1280 | 1.8906 | 0.6346 |
86
 
87
 
88
  ### Framework versions