REC-MV_preprocess
/
Self-Correction-Human-Parsing
/mhp_extension
/detectron2
/configs
/Base-RetinaNet.yaml
MODEL: | |
META_ARCHITECTURE: "RetinaNet" | |
BACKBONE: | |
NAME: "build_retinanet_resnet_fpn_backbone" | |
RESNETS: | |
OUT_FEATURES: ["res3", "res4", "res5"] | |
ANCHOR_GENERATOR: | |
SIZES: !!python/object/apply:eval ["[[x, x * 2**(1.0/3), x * 2**(2.0/3) ] for x in [32, 64, 128, 256, 512 ]]"] | |
FPN: | |
IN_FEATURES: ["res3", "res4", "res5"] | |
RETINANET: | |
IOU_THRESHOLDS: [0.4, 0.5] | |
IOU_LABELS: [0, -1, 1] | |
DATASETS: | |
TRAIN: ("coco_2017_train",) | |
TEST: ("coco_2017_val",) | |
SOLVER: | |
IMS_PER_BATCH: 16 | |
BASE_LR: 0.01 # Note that RetinaNet uses a different default learning rate | |
STEPS: (60000, 80000) | |
MAX_ITER: 90000 | |
INPUT: | |
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) | |
VERSION: 2 | |