{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ec83ec3c0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ec83ec3c160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ec83ec3c1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ec83ec3c280>", "_build": "<function ActorCriticPolicy._build at 0x7ec83ec3c310>", "forward": "<function ActorCriticPolicy.forward at 0x7ec83ec3c3a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ec83ec3c430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ec83ec3c4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ec83ec3c550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ec83ec3c5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ec83ec3c670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ec83ec3c700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ec83ebddf00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716449397619576483, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE22Oz1xgQ27JFtDO+7fKzzldSG8e6gZPQAAgD8AAIA/YDhXvi/QUj8Wtla+FlYkvyjv7r6VZQO+AAAAAAAAAACzRm69CPwRP+tKOb1r8Qm/HxCKvWE1Ar0AAAAAAAAAAGZKKD55cxk/jvZiO6YSB7+5OA8+chp5vQAAAAAAAAAAzXpjvVYZej8jYwO+VkIkvzkVkr0Gg+S9AAAAAAAAAAAtU4Q+RBZqP/azcT7XjB2/rMx1PuM4YDwAAAAAAAAAAMCm3D2uDbK6C+fwsrZv67AkxIi4c6OvMwAAgD8AAIA/GrZAvSQfSjzqDgA91yA6vnpbe7vZDgG9AAAAAAAAAABNrdu99ix5umVUhrpLKVC1tz4jOizqmjkAAIA/AAAAAICuXL3FWL88nD8UPvFhKb5ct5U920ALvQAAAAAAAAAAnWaZPit3eT8STAw/CxoqvyGuvj7+SvM9AAAAAAAAAAAmyj8+bIo2PgQ7Qb4NcZK+cR6cO0RctL0AAAAAAAAAAE0hDj7Xp3C78GJ9uWtqtDbaM8K8lCSbOAAAgD8AAIA/5o42Pi35oD+WPg4/EbQfv5qkVT4wk9k9AAAAAAAAAACzRyc9PP+9P0tQ/z7WQqE+H34zvJJg1DwAAAAAAAAAAONEir7Ux+Y+APpVvNC87b7k6kS+8l7dPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHErUsFt8/mMAWyUS+WMAXSUR0CdnJp+MIeHdX2UKGgGR0Bx1PgNwzciaAdL32gIR0CdnKmSyMUAdX2UKGgGR0Bv4Bd6cAinaAdLtWgIR0CdnY0Z3s5XdX2UKGgGR0BvW8X7+DODaAdLxGgIR0CdnaJcgQpXdX2UKGgGR0BkQjpJPIn0aAdN6ANoCEdAnZ2j9GZuynV9lChoBkdAcp5cnVoYemgHS9toCEdAnZ3+Z1FH8XV9lChoBkdAbmmnvUjLS2gHS79oCEdAnZ5oxYaHbnV9lChoBkdAcaDMEzO5a2gHS+xoCEdAnZ8x+fAbhnV9lChoBkdAcv4v4M4LkWgHS8poCEdAnZ9DCpFTenV9lChoBkdAcnO1eBxxUGgHS7VoCEdAnZ9uSwGGEnV9lChoBkdAcQiduHerMmgHS9JoCEdAnZ/R59mYjXV9lChoBkdAcoanW8RL9WgHTQEBaAhHQJ2f68J2MbZ1fZQoaAZHQG9Pzn7pFCtoB0u6aAhHQJ2f6Z+hGpd1fZQoaAZHQHK3pz90ihZoB0u1aAhHQJ2grTEzfrN1fZQoaAZHQHOyKPGQ0XRoB0vLaAhHQJ2hkdV/+bV1fZQoaAZHQG/dKCxu89RoB0vSaAhHQJ2hr8FY+0R1fZQoaAZHQHBu2RigCfZoB0uxaAhHQJ2h436yjYZ1fZQoaAZHQHExvGdZq21oB0vQaAhHQJ2iq6reZXx1fZQoaAZHQHE7TKcNH6NoB0vkaAhHQJ2jHBMzuWt1fZQoaAZHQHCUkwSJ0nxoB0vgaAhHQJ2jiTTvy9V1fZQoaAZHQHE53bItDlZoB0vSaAhHQJ2jnjo6jnF1fZQoaAZHQG4Z1qWTouBoB0u1aAhHQJ2kXGdZq211fZQoaAZHQHF6Tu0CzTpoB0vYaAhHQJ2kllrdnCh1fZQoaAZHQHCUb7CSA6NoB0u9aAhHQJ2kk7lq8Dl1fZQoaAZHQHDSOcQRPGhoB0vvaAhHQJ2l4aef7Jp1fZQoaAZHQGXYcer+5vtoB03oA2gIR0CdpoyeZof0dX2UKGgGR0BtpYEwFkhBaAdLvGgIR0CdpsRYRujzdX2UKGgGR0BxDpXr+o9+aAdL62gIR0CdpuVfNRm9dX2UKGgGR0BuemMVDa4+aAdLt2gIR0CdpuGW2PT5dX2UKGgGR0By0Jnh86V/aAdL1WgIR0Cdp1pOvdM1dX2UKGgGR0BwwNXfZVXFaAdLs2gIR0CdqBZV4oqkdX2UKGgGR0BwfmAavRqoaAdLx2gIR0CdqC2phnandX2UKGgGR0Bwj8+Sr5qNaAdLt2gIR0CdqL2w3YL9dX2UKGgGR0Bw2hBJI1+BaAdL0GgIR0CdqWU4aP0adX2UKGgGR0ByKIMoc7yQaAdL4GgIR0Cdqv336AOKdX2UKGgGR0ByH6QaJhvzaAdL22gIR0Cdqyo60Y0mdX2UKGgGR0BzAGll9SdfaAdL+2gIR0CdrIwVj7Q+dX2UKGgGR0BydLn4fwI/aAdL2mgIR0CdrShBqsU7dX2UKGgGR0BwTrqoqCpWaAdLv2gIR0CdrTxEv0yydX2UKGgGR0BxiuEzwc5saAdLymgIR0CdreBEa2nbdX2UKGgGR0Bx/LdFfAsTaAdLumgIR0Cdre2saKk3dX2UKGgGR0Bx/Q2YOUdJaAdL2GgIR0CdrgE4NqgzdX2UKGgGR0Bv6WmvW6K+aAdL2WgIR0Cdrn5fdAPedX2UKGgGR0BxkCiUPhAGaAdLsWgIR0CdrpnLq2SddX2UKGgGR0BxfRxLkCFLaAdL6WgIR0CdsQ/NZ/0/dX2UKGgGR0Bw+zdVNpM6aAdLzmgIR0Cdsbh0Qsf8dX2UKGgGR0Bzdq/CZWq+aAdL7WgIR0CdshnzQNTcdX2UKGgGR0By7N5VwPy1aAdL32gIR0CdtJL+PzWgdX2UKGgGR0ByEwNQTEiuaAdL4mgIR0CdtNpZfUnYdX2UKGgGR0BwmO5AhStOaAdLv2gIR0CdtVhWYF7ldX2UKGgGR0BxNlrBTGYKaAdLwGgIR0CdtXesgdOqdX2UKGgGR0BwRfddmg8KaAdL22gIR0Cdte/wAlv7dX2UKGgGR0BwLc9ovi97aAdLvWgIR0Cdtru+yquKdX2UKGgGR0Bt/qfthNM5aAdLxWgIR0Cdtv/cnE2pdX2UKGgGR0BwuRO8CgbqaAdL22gIR0Cdt1e7L+xXdX2UKGgGR0BzSBhUipvQaAdL7WgIR0CduBGBWgezdX2UKGgGR0BxZHoB7u2JaAdL62gIR0CduBHCXQdCdX2UKGgGR0Bx5YPxx1gZaAdL0WgIR0CdufkDIRywdX2UKGgGR0By4m9du5z6aAdL52gIR0CdujBHkLhKdX2UKGgGR0Bx/xPUKArhaAdL12gIR0CdumktmL9/dX2UKGgGR0BxGxQ66reZaAdLsGgIR0Cdu3gH/tIDdX2UKGgGR0Bw60ymALApaAdLsmgIR0Cdu/54W1twdX2UKGgGR0BurTK/20zCaAdLymgIR0Cdu/YU34sVdX2UKGgGR0BxJcUDdP+GaAdL4GgIR0CdvHGKyfL+dX2UKGgGR0BhnwaP0Zm7aAdN6ANoCEdAnbyD3ueBhHV9lChoBkdAcFvnSOR1YGgHS9VoCEdAnbyxzBAOa3V9lChoBkdAcgQ7gbZOBWgHS7loCEdAnbzA6Mir1nV9lChoBkdAcB0yon8baWgHS8NoCEdAnb1WPkq+anV9lChoBkdAbcj+98JD3WgHS8BoCEdAnb24+4b0e3V9lChoBkdAcJ8yqMm4RWgHS91oCEdAnb3O0LMLW3V9lChoBkdAcSoz4DcM3WgHS+hoCEdAnb7DeoDPnnV9lChoBkdAcRZjdYW+G2gHS7doCEdAnb+cSkCV8nV9lChoBkdAY61YSxqwhWgHTegDaAhHQJ2/x5Z8rqd1fZQoaAZHQF5SeqJdjXpoB03oA2gIR0Cdv/kbPyCndX2UKGgGR0BxzC87IT4+aAdL5GgIR0CdwFbR4QjEdX2UKGgGR0ByxmamXPZ7aAdL9mgIR0CdwO5yU9pzdX2UKGgGR0ByQjFvQ4S6aAdL3GgIR0CdwUgw482adX2UKGgGR0BxDFsP8Q7LaAdL02gIR0CdwXqqfe1sdX2UKGgGR0BxFXustCiRaAdL4WgIR0CdwcF2FFlTdX2UKGgGR0ByNqNdZ7ojaAdL2WgIR0CdwfHsC1Z1dX2UKGgGR0Bx/BWPtD2KaAdL42gIR0CdwjSy+pOvdX2UKGgGR0BuGD+glF+eaAdL3GgIR0CdwjzUZvUCdX2UKGgGR0BuL1Un5SFXaAdLz2gIR0Cdwr0PH1e0dX2UKGgGR0ByZEFJQLuyaAdL+WgIR0Cdws0r9VFQdX2UKGgGR0BvtLPdEb5uaAdL0GgIR0Cdw8W9US7HdX2UKGgGR0Bxt9U70WdmaAdL9mgIR0Cdw82mHgxbdX2UKGgGR0Bvc3CCSRr8aAdLuGgIR0Cdw+q3VkMDdX2UKGgGR0BxdJl5GBnSaAdNIwFoCEdAncRrs8gZCXV9lChoBkdAcG/BEa2nbmgHS71oCEdAncSy7TUiIXV9lChoBkdAcfAnzxwyZmgHS9FoCEdAncTGp6yB1HV9lChoBkdAcZJt9x6v7mgHS91oCEdAncTjF2mpEXV9lChoBkdAcRNmRvFWGWgHS9RoCEdAncYgGB4D93V9lChoBkdAciYdqL0jDGgHS9NoCEdAncZM5XEIgXV9lChoBkdAcixXbdrO7mgHS+9oCEdAncZrDAJswnV9lChoBkdAcL8NkvsZ52gHS7loCEdAncaCwGGEf3V9lChoBkdAcB5ERJ2+wmgHS9BoCEdAnccHYYixFHV9lChoBkdAbfCcpb2US2gHS+RoCEdAnccDBqKxcHV9lChoBkdAcUZpSrHU+mgHS+RoCEdAncc4vSMLnnV9lChoBkdAcCwIikfs/2gHS8JoCEdAncdM5XEIgXV9lChoBkdAcBQ7TUiIL2gHS7FoCEdAncfVIVdonXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 355, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |