update model card README.md
Browse files
README.md
CHANGED
@@ -22,16 +22,16 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Precision
|
24 |
type: precision
|
25 |
-
value: 0.
|
26 |
- name: Recall
|
27 |
type: recall
|
28 |
-
value: 0.
|
29 |
- name: F1
|
30 |
type: f1
|
31 |
-
value: 0.
|
32 |
- name: Accuracy
|
33 |
type: accuracy
|
34 |
-
value: 0.
|
35 |
---
|
36 |
|
37 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -41,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
41 |
|
42 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
|
43 |
It achieves the following results on the evaluation set:
|
44 |
-
- Loss: 0.
|
45 |
-
- Precision: 0.
|
46 |
-
- Recall: 0.
|
47 |
-
- F1: 0.
|
48 |
-
- Accuracy: 0.
|
49 |
|
50 |
## Model description
|
51 |
|
@@ -76,14 +76,14 @@ The following hyperparameters were used during training:
|
|
76 |
|
77 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
78 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
|
83 |
|
84 |
### Framework versions
|
85 |
|
86 |
-
- Transformers 4.12.
|
87 |
-
- Pytorch 1.
|
88 |
-
- Datasets 1.
|
89 |
- Tokenizers 0.10.3
|
|
|
22 |
metrics:
|
23 |
- name: Precision
|
24 |
type: precision
|
25 |
+
value: 0.9300908486594284
|
26 |
- name: Recall
|
27 |
type: recall
|
28 |
+
value: 0.9391430808815304
|
29 |
- name: F1
|
30 |
type: f1
|
31 |
+
value: 0.9345950459226274
|
32 |
- name: Accuracy
|
33 |
type: accuracy
|
34 |
+
value: 0.9842407104389407
|
35 |
---
|
36 |
|
37 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
41 |
|
42 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
|
43 |
It achieves the following results on the evaluation set:
|
44 |
+
- Loss: 0.0589
|
45 |
+
- Precision: 0.9301
|
46 |
+
- Recall: 0.9391
|
47 |
+
- F1: 0.9346
|
48 |
+
- Accuracy: 0.9842
|
49 |
|
50 |
## Model description
|
51 |
|
|
|
76 |
|
77 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
78 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
79 |
+
| 0.2402 | 1.0 | 878 | 0.0692 | 0.9177 | 0.9248 | 0.9213 | 0.9815 |
|
80 |
+
| 0.0506 | 2.0 | 1756 | 0.0600 | 0.9249 | 0.9361 | 0.9305 | 0.9836 |
|
81 |
+
| 0.0304 | 3.0 | 2634 | 0.0589 | 0.9301 | 0.9391 | 0.9346 | 0.9842 |
|
82 |
|
83 |
|
84 |
### Framework versions
|
85 |
|
86 |
+
- Transformers 4.12.5
|
87 |
+
- Pytorch 1.10.0+cu111
|
88 |
+
- Datasets 1.16.1
|
89 |
- Tokenizers 0.10.3
|