{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x786daad9cee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x786daad9cf70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x786daad9d000>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x786daad9d090>", "_build": "<function ActorCriticPolicy._build at 0x786daad9d120>", "forward": "<function ActorCriticPolicy.forward at 0x786daad9d1b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x786daad9d240>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x786daad9d2d0>", "_predict": "<function ActorCriticPolicy._predict at 0x786daad9d360>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x786daad9d3f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x786daad9d480>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x786daad9d510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x786daad36380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1118688, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698253991645277983, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADXBT276qo+4HDlvR3VSb6rlhu9dcoyvQAAAAAAAAAA81+9PUiLs7rNmIe7fXxbONE9dbpxDQ85AAAAAAAAgD8Atwc9Kexpuk7Lhrt8B1Q49vQhO6izCTkAAIA/AACAP3PEEj5uY2M/vkbFvZwekr6Hb809HW8BvAAAAAAAAAAAzV1UPXxeCD04jNW9UoI/vpRNH73TXUM9AAAAAAAAAAAmRIk9UQNxPrVwz73SUm++Qgh6PJp9tLsAAAAAAAAAAPOMB77k6QQ+GI2OPe0+aL6pJAi81pG7vAAAAAAAAAAAAACGu+HGpbpIn3Q7iZ6KPILPIbuDR3E9AACAPwAAgD9mXFA8/U0qP+4NFr37kYi+RbedO+NByLsAAAAAAAAAAO12Or5GhYA/6HY8vomEpL6raYe+im0tuwAAAAAAAAAAOmIKPmtXpT92p8Y+OY6ZviQ8az4wUOk9AAAAAAAAAADAjFK+xVUXPyhaUT5HWGG+7AH7PFCSRL0AAAAAAAAAAJoJ3bxIC4i6TwEVuVohC7TpRNe5PG4tOAAAgD8AAIA/AC9mvU8qULziHCm7ueC4PGCToD06jco7AACAPwAAgD/TmIc+TJWXP7Pe5T69O82+UcDSPv8uEj4AAAAAAAAAAJrxr7vD3Ve64nBnuJIinbNMuRk7bxWHNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.8885888, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCJAC4jKPqMAWyUTSUBjAF0lEdAnNl0LMLWqnV9lChoBkdAcDFvrnkkr2gHTVABaAhHQJzaF3Tuv2Z1fZQoaAZHQG6aH0kGA09oB01QAWgIR0Cc2ts7+1jRdX2UKGgGR0ByYSfg75mAaAdNcQFoCEdAnN7dlRP423V9lChoBkdAblayu6mO2mgHTUYBaAhHQJzfqdFvybx1fZQoaAZHQHDmfQF9roJoB00sAWgIR0Cc4JGqPwNLdX2UKGgGR0BvJ9LlFMIvaAdNigFoCEdAnODeqaPS2HV9lChoBkdAS9aOxSpBHGgHS+FoCEdAnOD+jqOcUnV9lChoBkdAckWADq4YrWgHTQ0BaAhHQJzk6tITXat1fZQoaAZHQHCHVt0mtyRoB00nAWgIR0Cc5PA5q/M4dX2UKGgGR0Bz6EZHd43WaAdNZQFoCEdAnOV9RaX8fnV9lChoBkdAcPwjp9qk/WgHTXIBaAhHQJzlkznA6+51fZQoaAZHQHFUyMxXXAdoB01tAWgIR0Cc5bYHPeHjdX2UKGgGR0Bw59RhttQ9aAdNVAFoCEdAnOX3jQzDXXV9lChoBkdAcNRCZF5OamgHTYcBaAhHQJzmT3RG+bp1fZQoaAZHQG4jrZamoBJoB02EAWgIR0Cc53Cqp97XdX2UKGgGR0BxbqEtdzGQaAdN1wFoCEdAnOkqrBCUo3V9lChoBkdAcAWtLcsUZmgHTREBaAhHQJzpo0vXbud1fZQoaAZHQHChVDjR2KVoB00nAWgIR0Cc6bz/p+tsdX2UKGgGR0Bw37LowEhaaAdNJQFoCEdAnOsUvwmVq3V9lChoBkdAYJt3PAwfyWgHTegDaAhHQJzrTr9l2/11fZQoaAZHQG7686V+qipoB00/AWgIR0Cc7C6ySmqHdX2UKGgGR0BUyvustCiRaAdN6ANoCEdAnO5iMYMvy3V9lChoBkdAbZtjXnQpnmgHTT4BaAhHQJzvvLDAJsx1fZQoaAZHQHBqiEtdzGRoB01GAWgIR0Cc8A3y7PIGdX2UKGgGR0BxTuEal1r7aAdNJAFoCEdAnPAx8hLXc3V9lChoBkdAbvkChew9q2gHTT0BaAhHQJzwPBk7Oml1fZQoaAZHQHAdvwEyLydoB01DAWgIR0Cc8NfL9uP4dX2UKGgGR0BwP9D5TIeYaAdNUgFoCEdAnPD4e1a4c3V9lChoBkdAcDjhsqJ/G2gHTVIBaAhHQJzxDsolUqB1fZQoaAZHQHHnSZBsyi5oB03qAWgIR0Cc8hOmR/3GdX2UKGgGR0BwAWZRbbDeaAdNTAFoCEdAnPJ/VEuxr3V9lChoBkdAcH1OiWVu8GgHTSEBaAhHQJzyxyKekHl1fZQoaAZHQG/wTz3AVO9oB005AWgIR0Cc8874SHuadX2UKGgGR0BtvW56MR6GaAdNLgFoCEdAnPTykKu0TnV9lChoBkdAcS9aTwDvE2gHTToBaAhHQJ0IA91U2k11fZQoaAZHQHChSLVFx4poB01cAWgIR0CdCBLn9vS/dX2UKGgGR0BrwFIkJKJ3aAdNhgFoCEdAnQgh4Y77sXV9lChoBkdAcWg1UlzEJmgHTTIBaAhHQJ0KnpeNT991fZQoaAZHQHA/bVrhzeZoB00hAWgIR0CdC5v0h/y5dX2UKGgGR0ByEdB1LamGaAdNEQFoCEdAnQyronrpq3V9lChoBkdAcLjJaaCtimgHTRkBaAhHQJ0M4IomXw91fZQoaAZHQG0agWJrLyNoB00XAWgIR0CdDR6eoUBXdX2UKGgGR0BwrXPhQ3xXaAdNRAFoCEdAnQ3rHyVfNXV9lChoBkdAcC4gzxgAqGgHTVABaAhHQJ0OQ7uDzy11fZQoaAZHQHFg+yu6mO5oB01ZAWgIR0CdDtcCo0hvdX2UKGgGR0BP5qqn3ta7aAdNCAFoCEdAnQ8Ps/pt8HV9lChoBkdAbs7rgwXZXmgHTUIBaAhHQJ0RA10knkV1fZQoaAZHQG+bWkrPMStoB018AWgIR0CdEunmJWNndX2UKGgGR0BxmDUI9kjHaAdNbQFoCEdAnRVUZeiSJXV9lChoBkdAb+zU7Sy+pWgHTSUBaAhHQJ0VmDsdDIB1fZQoaAZHQG+bEQGwA2hoB01pAWgIR0CdFtXVsk6cdX2UKGgGR0BwgwWznieeaAdNUwFoCEdAnReD/ACW/3V9lChoBkdAbJtmapgkT2gHTSoBaAhHQJ0YA8gZCOZ1fZQoaAZHQHBj7hisnzBoB01mAWgIR0CdGEVjqfOEdX2UKGgGR0BxucaQ3gk1aAdNKwFoCEdAnRnO54GD+XV9lChoBkdAbon+6RQrMGgHTUABaAhHQJ0aZdKNAC51fZQoaAZHQHLfhisny/doB00rAWgIR0CdGs1Tzd1udX2UKGgGR0BxFXjp9qk/aAdNOAFoCEdAnRr73wkPc3V9lChoBkdAcfd2OyVv/GgHTUMBaAhHQJ0cANWluWN1fZQoaAZHQHGcskpqh11oB014AWgIR0CdHCC6Ymb9dX2UKGgGR0BwGpujynUEaAdNHwFoCEdAnRyFtbcGknV9lChoBkdAcc6bJfYzzmgHTacBaAhHQJ0c4NnXd0t1fZQoaAZHQHC7nKr7wa1oB01dAWgIR0CdHOr+YMOPdX2UKGgGR0A2Hjnmq5skaAdL8WgIR0CdHqHmA9V4dX2UKGgGR0BwF/cZccENaAdNHwFoCEdAnR8so2GZeHV9lChoBkdAcYX87ZFoc2gHTWMBaAhHQJ0fpuLrHEN1fZQoaAZHQHBg1HJ9y95oB008AWgIR0CdIaQu27WedX2UKGgGR0Bx/LWJ79hraAdNSgFoCEdAnSKlnM+u/3V9lChoBkdAcTdzUZvUBmgHTUMBaAhHQJ0ipuJk5IZ1fZQoaAZHQG926cI7eVNoB02MAWgIR0CdIq5uZThpdX2UKGgGR0BwaLsXzlLfaAdNGwFoCEdAnSNRArxy4nV9lChoBkdAcGTi6g/Ts2gHTTUBaAhHQJ0koy0rsjV1fZQoaAZHQEo4/Vy3kPtoB0v6aAhHQJ0lBU83dbh1fZQoaAZHQHD7FHFxXGRoB01pAWgIR0CdJY/xDst1dX2UKGgGR0BvyqJuVHFxaAdNTAFoCEdAnSWhzmwJPnV9lChoBkdAcaos/6frbGgHTR0BaAhHQJ0lu5Yoy9F1fZQoaAZHQG6YsXJo0yhoB01IAWgIR0CdJol5WzWxdX2UKGgGR0ByxP4EfT1DaAdNTgFoCEdAnSaac3EQ5HV9lChoBkdAcyebt7a7E2gHTToBaAhHQJ0m5OARTS91fZQoaAZHQG8KYt6HCXRoB00jAWgIR0CdKRs1KoQ4dX2UKGgGR0Bvrn7Lt/nXaAdNXQFoCEdAnSn4DDCP63V9lChoBkfAI4TrE9+w1WgHS/loCEdAnSqliBoVVXV9lChoBkdARLqVMVUMomgHS+loCEdAnSq0Uwi7kHV9lChoBkdAcWxn0Cih4GgHTWkBaAhHQJ0q6e18b711fZQoaAZHQHCITA31jAloB00FAWgIR0CdLOc45tFbdX2UKGgGR0Bwcz2kBS1maAdNQgFoCEdAnS0teQdS23V9lChoBkdAb4jReC04R2gHTUsBaAhHQJ0tdmK64Dt1fZQoaAZHQHD2TFVDKHRoB008AWgIR0CdQMxtpEhJdX2UKGgGR0Bu8M078vVWaAdNmAFoCEdAnUDNJz1bq3V9lChoBkdAbTuFFDv3J2gHTT8BaAhHQJ1BrztkWh11fZQoaAZHQHB42/i5uqFoB00kAWgIR0CdQg4RVZLadX2UKGgGR0BLVilabF0gaAdL1WgIR0CdQnXCTEBKdX2UKGgGR0BxhwwqRU3oaAdNQQFoCEdAnUNzWXkYGnV9lChoBkdAcVHk1Muez2gHTYMBaAhHQJ1FJ78ejmF1fZQoaAZHQG7lMqjJuEVoB00lAWgIR0CdR5x6OYICdX2UKGgGR0ByFp3zMA3laAdNIwFoCEdAnUiOZPVNH3V9lChoBkdAcD/NTtLL6mgHTUsBaAhHQJ1KzXumaYx1fZQoaAZHQHIuR4dIXj5oB01FAWgIR0CdStr3Cbc5dX2UKGgGR0BwI2Fg2IfsaAdN1wFoCEdAnUuw2ycCo3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 304, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |