makiisthebes's picture
LeNet model
9185b48 verified
raw
history blame contribute delete
No virus
11 kB
# Rewriting the LeNet model to learn the MNIST dataset and save the model parameters,
# This is considered something we should do in Week 3 of the Deep Learning and Computer Vision course.
# We will implement LeNet-5 architecture to learn the MNIST dataset.
from torchvision.transforms import ToTensor
# from torchvision.transforms import v2
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torchvision import datasets
import matplotlib.pyplot as plt
from PIL import Image
from time import time
from torch import nn
import pandas as pd
import numpy as np
import torch, os
from utils import ApplyEnhancementFilter
# Load device first (GPU or CPU)
device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
print(f"Using {device} device for training/inference.")
if device == "cuda":
print(f"GPU being used: {torch.cuda.get_device_name(0)}")
train_transform = transforms.Compose([
# Data augmentation transformations
# ApplyEnhancementFilter(out_channels=1, kernel_size=3, stride=1, padding=1),
transforms.RandomAffine(degrees=35, translate=(0.1, 0.1), scale=(0.9, 1.1)),
transforms.RandomRotation(degrees=35),
# Convert images to tensors and normalize
transforms.ToTensor(),
transforms.Normalize((0.13066047430038452,), (0.30810782313346863,)),
# Pad the image to make it 32x32
transforms.Pad(2, fill=0, padding_mode='constant'),
])
# For the test dataset, you should not apply these augmentations
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.13066047430038452,), (0.30810782313346863,)),
transforms.Pad(2, fill=0, padding_mode='constant'),
])
# Load the MNIST dataset which is 32x32x1 images (black and white ~ 1 channel)
# http://yann.lecun.com/exdb/mnist/
# datasets.MNIST
# Loading from Dataset and DataLoader, https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
# Load using known datasets, but what if we have our own dataset?
# training_data = datasets.MNIST(
# root="data",
# train=True,
# download=True,
# transform=ToTensor()
# )
#
# test_data = datasets.MNIST(
# root="data",
# train=False,
# download=True,
# transform=ToTensor()
# )
# Loading from a custom dataset
import idx2numpy
class CustomImageDataset(Dataset):
"""
This class must inherit from the torch.utils.data.Dataset class.
And contina functions __init__, __len__, and __getitem__.
"""
def __init__(self, annotations_file, image_file, transform=None, target_transform=None):
self.img_labels = idx2numpy.convert_from_file(annotations_file)
self.images = idx2numpy.convert_from_file(image_file)
self.transform = transform
self.target_transform = target_transform
def __len__(self):
return len(self.img_labels)
def __getitem__(self, idx):
"""Get the image and label at the index idx."""
label = self.img_labels[idx]
img = self.images[idx]
img = Image.fromarray(img)
if self.transform:
img = self.transform(img)
if self.target_transform:
label = self.target_transform(label)
# Adding 0 padding to make it 32x32, as the model expects this.
# img = img.unsqueeze(0) # Add channel dimension, as model expects this.
return img, label # Return as float32, and label as int., should solve issue.
# Make the LeNet-5 model
class LeNet5Model(nn.Module):
def __init__(self):
super().__init__()
# Define activation, and sequential layers, then make forward pass.
self.tanh = nn.Tanh()
# Convolutional layers, https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
# Avg Pooling, https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html
self.le_stack = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1),
self.tanh,
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1),
self.tanh,
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5, stride=1),
self.tanh
)
# Fully connected layers, https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
self.fc_stack = nn.Sequential(
nn.Linear(in_features=120, out_features=84),
self.tanh,
nn.Linear(in_features=84, out_features=10)
)
def forward(self, x):
"""Forward pass of the model."""
x = self.le_stack(x)
x = x.reshape(x.shape[0], -1)
x = self.fc_stack(x)
return x
def train_model(model, train_loader, test_loader, epochs=10, learning_rate=0.001, saved_model=None):
"""
Given a model, train the model using the train_loader and test_loader, and show metrics,
saving the best model parameters currently.
"""
# When we have model, we need the loss function and optimizer we will use.
# Loss function, https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
loss_fn = nn.CrossEntropyLoss() # because we calculating probabilities and this is a classification problem.
# Optimizer, https://pytorch.org/docs/stable/optim.html
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=1e-6) # learning rate of 0.001
best_accuracy = 0.0
# See if best accuracy is saved, if so, get current best accuracy.
if os.path.exists("best_model.txt"):
with open("best_model.txt", "r") as file:
best_accuracy = float(file.read())
if saved_model is not None: # Load the model parameters if they exist.
model.load_state_dict(torch.load(saved_model))
# Training loop
for i in range(epochs):
model.train()
print("Epoch ", i)
for batch, (x, y) in enumerate(train_loader):
x, y = x.to(device), y.to(device)
# Forward pass
# print(x.shape, y.shape)
# Shape of x is [64, 28, 28] and y is [64,]
# But x needs to include the channels, so shape should be [64, 1, 28, 28]
# x = x.view(-1, 1, 32, 32)
y_pred = model(x)
# Compute loss
loss = loss_fn(y_pred, y)
# Zero gradients, backward pass, and update weights
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Print loss
if batch % 250 == 0:
print(f"Epoch {i} batch {batch} loss: {loss.item()}")
# Evaluate the model
model.eval()
correct, total = 0, 0
with torch.no_grad():
for x, y in test_loader:
x, y = x.to(device), y.to(device)
#x = x.view(-1, 1, 32, 32)
y_pred = model(x)
_, predicted = torch.max(y_pred, 1)
total += y.size(0)
correct += (predicted == y).sum().item()
print(f"Epoch {i} accuracy: {correct/total}")
if correct/total > best_accuracy:
best_accuracy = correct/total
torch.save(model.state_dict(), "lenet_mnist_model.pth")
with open("best_model.txt", "w") as file:
file.write(f"{best_accuracy}")
print("Training complete.")
def init_weights(m):
if isinstance(m, nn.Conv2d):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
m.bias.data.fill_(0.01)
elif isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.01)
if __name__ == "__main__":
# Testing conversion from ubyte idx to numpy array
# file_name = "t10k-images.idx3-ubyte"
# label_file = "t10k-labels.idx1-ubyte"
# file_path = os.path.join("mnist_dataset", label_file)
# image_array = idx2numpy.convert_from_file(file_path)
# print(image_array.shape) # (10000, 28, 28) # 10000 images of 28x28 pixels
test_data = CustomImageDataset("mnist_dataset/t10k-labels.idx1-ubyte", "mnist_dataset/t10k-images.idx3-ubyte", transform=test_transform)
print((test_data[0])[0].shape, "label value", test_data[0][1]) # Getting image from dataset.
train_data = CustomImageDataset("mnist_dataset/train-labels.idx1-ubyte", "mnist_dataset/train-images.idx3-ubyte", transform=train_transform)
# Create a DataLoader, so we can iterate through the dataset in batches.
test_loader = DataLoader(test_data, batch_size=64, shuffle=True)
train_loader = DataLoader(train_data, batch_size=64, shuffle=True)
# print(f"Output shape of train function, ", next(iter(test_loader))[0].shape) # [ 64x28x28 ] [64,] Image and labels.
# Display image and label. - From docs.
# train_features, train_labels = next(iter(train_loader))
# print(f"Feature batch shape: {train_features.size()}")
# print(f"Labels batch shape: {train_labels.size()}")
# img = train_features[0].squeeze()
# label = train_labels[0]
# plt.imshow(img, cmap="gray")
# plt.show()
# print(f"Label: {label}")
model = LeNet5Model().to(device)
model.apply(init_weights) # Apply Xavier initialisation to the model.
print(model)
# Training the model
train_model(model, train_loader, test_loader, epochs=1000, learning_rate=0.001)
# Save the model parameters
torch.save(model.state_dict(), "lenet_mnist_model.pth")
# Current errors include:
# - RuntimeError: Input type (unsigned char) and bias type (float) should be the same
# - I solved this by converting the image from customer loader to float32 values.
# - RuntimeError: Calculated padded input size per channel: (4 x 4). Kernel size: (5 x 5). Kernel size can't be greater than actual input size
# - I solved this by adding padding to make it 32x32 as the model expect this and dataset is 28x28.
# - The model also had problems when evaluating, it is important dims are batch x channels x height x width, and labels are int.
# Ways to improve accuracy:
# We will try to normalise the dataset via z-score, so values which are brighter are not given more importance. [98.99% accuracy]
# We can apply rotations and affine to potentially improve the model by making it learn more abstractly from specific patterns rather than exact same orientation.
# Xavier intialisation of CNN and FC layers, to prevent vanishing gradients.
# Increase the angle of rotation and affine transformations to see if it improves the model.
# We could potentally help the model by applying a enhancement filter (negative laplacian) from computer vision, to the image, inverse laplacian
# We do not know whether model is overfitting, as we do not have a graph of the training and validation loss.