PEFT
Safetensors
xinpeng commited on
Commit
8a5cfe0
1 Parent(s): 39676f7

add model card

Browse files
Files changed (1) hide show
  1. README.md +65 -3
README.md CHANGED
@@ -1,3 +1,65 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ ---
5
+
6
+ ### Framework versions
7
+
8
+
9
+ - PEFT 0.5.0
10
+ ---
11
+
12
+ # Model Card for MCQ-Classifier-MMLU-EFG
13
+ MCQ-Classifier is a parameter-efficient finetuned 7B Mistral-7b-base-v0.1 to automatically detect the model answers to Multiple Choice Questions.
14
+
15
+ This model is trained on annotated model outputs to MMLU dataset. We collected responses from Llama2-7b-chat, Llama2-13b-chat and Mistral-7b-Inst-v0.2
16
+
17
+ For full details of this model please read our [paper](https://arxiv.org/abs/2404.08382).
18
+
19
+ ## "EFG"
20
+ During our annotation phase, we noticed that models may not choose the available answer candiates but refuse to answer or claim "No correct answer available."
21
+ Therefore, we consider other three cases "Refusal", "No correct answer", "I don't know" and add those three options into the answer candidates, extending the option range from "A-D" to "A-G".
22
+ Note that we shuffle the oder of the options in our dataset, therefore, "EFG" does not necessarily correspond to "Refusal", "No correct answer" and "I don't know".
23
+
24
+ Also note that, if the model refuse to answer due to safety reason, the answer will be mapped to the refuse option
25
+ such as "D. Refused".
26
+
27
+ ## Run the model
28
+ Your should construct your input into such format: model_reponse + "\nReferences:" + references + "\nAnswer:"
29
+
30
+ For example:
31
+ ```
32
+ inputs = ' Sure! I can help you with that. The answer to the question is:\n\nB. Frederick Taylor \nReferences: \nA. Lillian Gilbreth \nB. Frederick Taylor \nC. No correct answer is given \nD. I do not know \nE. Refused \nF. Mary Parker Follett \nG. Elton Mayo \nAnswer:'
33
+ ```
34
+ then feed it to the classifier:
35
+ ```python
36
+ from transformers import AutoModelForCausalLM, AutoTokenizer
37
+ from peft import PeftModel, PeftConfig
38
+ config = PeftConfig.from_pretrained("mainlp/MCQ-Classifier-MMLU-EFG")
39
+ base_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
40
+ model = PeftModel.from_pretrained(base_model, "mainlp/MCQ-Classifier-EFG")
41
+ tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
42
+ to_classify = f"""<s>[INST] Classify the response.{inputs} [/INST]"""
43
+ model_input = tokenizer(to_classify, return_tensors="pt")
44
+ output = merged_model.generate(**model_input, max_new_tokens=1, do_sample=False)
45
+ print(tokenizer.decode(output.sequences[0], skip_special_tokens=True))
46
+ ```
47
+
48
+ ## Cite
49
+ ```
50
+ @article{wang2024my,
51
+ title={" My Answer is C": First-Token Probabilities Do Not Match Text Answers in Instruction-Tuned Language Models},
52
+ author={Wang, Xinpeng and Ma, Bolei and Hu, Chengzhi and Weber-Genzel, Leon and R{\"o}ttger, Paul and Kreuter, Frauke and Hovy, Dirk and Plank, Barbara},
53
+ journal={arXiv preprint arXiv:2402.14499},
54
+ year={2024}
55
+ }
56
+ ```
57
+
58
+ ```
59
+ @article{wang2024look,
60
+ title={Look at the Text: Instruction-Tuned Language Models are More Robust Multiple Choice Selectors than You Think},
61
+ author={Wang, Xinpeng and Hu, Chengzhi and Ma, Bolei and R{\"o}ttger, Paul and Plank, Barbara},
62
+ journal={arXiv preprint arXiv:2404.08382},
63
+ year={2024}
64
+ }
65
+ ```