Adding initial model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 188.35 +/- 88.74
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6d762c5a70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6d762c5b00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6d762c5b90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6d762c5c20>", "_build": "<function ActorCriticPolicy._build at 0x7f6d762c5cb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6d762c5d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6d762c5dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6d762c5e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6d762c5ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6d762c5f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6d762cc050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6d76321090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651711356.0758119, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNxh70pUEK6xA03uk0yu7Vanq05XdstNQAAgD8AAIA/TfClvR+VxbnCqdA6gP32NB35ursoDva5AACAPwAAgD9GHt8+/TFtPzeikD4Z+cy+IcBhPlMfabwAAAAAAAAAANpfYD7syeo8oBmUup/oV7lEtoM+1uHWOQAAgD8AAIA/DbadPeHkhLowz1A6k74yNZnkkbotHW65AACAPwAAgD9W1FS+iAq1vBcvjrtZN/G5BIIlPnYYvDoAAIA/AACAP+Bqgz4gLcw+hswgvn6aDb7B1668a4yMvQAAAAAAAAAAGpDEvfZcK7pGFza7S1RxtrJ2yjpQ5VI6AACAPwAAgD8AX8Q97FH+ufIRubtr1xA4oCUaO2VKjrYAAIA/AACAP9oThD3DkWS6oYG0tro/ArJUVZk6Y9LTNQAAgD8AAIA/RsFdPvYtVLyrNig7tAYXuXSQsr3lXka6AACAPwAAgD8tyTA+HH4ovDwVCDt37PC4gcOWvcZ/K7oAAIA/AACAP1Anv74/7wY/4FktPkMSfr68CPk7TXxFPgAAAAAAAAAALaJYvr1GA73m0Gq7guYPuvBDaD7Jp546AACAPwAAgD+azZw79hxHuuBclDvm1561WXzBuNHaq7oAAIA/AACAP0OCjj6fN827gIE8vt4mH77+3Iy915aKvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4pANpIu0YUCUhpRSlIwBbJRN6AOMAXSUR0CPE2ejEehgdX2UKGgGaAloD0MIS1tc47NnYUCUhpRSlGgVTegDaBZHQI829ZA6dUd1fZQoaAZoCWgPQwi28/3UeGn8v5SGlFKUaBVL3GgWR0CPN02G7BfsdX2UKGgGaAloD0MIA0GADB2UX0CUhpRSlGgVTegDaBZHQI89smdAgPp1fZQoaAZoCWgPQwhFEr2MYplYQJSGlFKUaBVN6ANoFkdAj1ENnwob43V9lChoBmgJaA9DCFsLs9BOMGBAlIaUUpRoFU3oA2gWR0CPWDuKGcnWdX2UKGgGaAloD0MIKxTpfk6NXECUhpRSlGgVTegDaBZHQI9tSqABkqd1fZQoaAZoCWgPQwgS290D9J1kQJSGlFKUaBVN6ANoFkdAj3/KsU7CBXV9lChoBmgJaA9DCEP/BBcrM1xAlIaUUpRoFU3oA2gWR0CPgQ8J2MbWdX2UKGgGaAloD0MI6nsNwfGwYkCUhpRSlGgVTegDaBZHQI+ME+cH4XZ1fZQoaAZoCWgPQwhS1QRR96piQJSGlFKUaBVN6ANoFkdAj45JSJj2BnV9lChoBmgJaA9DCAthNZYwxWZAlIaUUpRoFU3oA2gWR0CPkrtLteD4dX2UKGgGaAloD0MIWpvG9loXZECUhpRSlGgVTegDaBZHQI+UUKb8WKx1fZQoaAZoCWgPQwjwTdNnBx9aQJSGlFKUaBVN6ANoFkdAj5Wm5UcXFnV9lChoBmgJaA9DCM791eM+nWBAlIaUUpRoFU3oA2gWR0CPmqsRQJokdX2UKGgGaAloD0MIAMrfvSPgYECUhpRSlGgVTegDaBZHQI+hRrYXfqJ1fZQoaAZoCWgPQwhF2VvKeRdhQJSGlFKUaBVN6ANoFkdAj6hEtVaOgnV9lChoBmgJaA9DCL6DnziAPjrAlIaUUpRoFUvsaBZHQI+tAiLVFx51fZQoaAZoCWgPQwjpmPOMfdJfQJSGlFKUaBVN6ANoFkdAj84D9n9NvnV9lChoBmgJaA9DCHqobcMo02BAlIaUUpRoFU3oA2gWR0CPzlOh0yP/dX2UKGgGaAloD0MIWDuKc9SRKMCUhpRSlGgVTUoBaBZHQI/QYoXsPat1fZQoaAZoCWgPQwj76T9rfpdgQJSGlFKUaBVN6ANoFkdAj9PLPt2LYXV9lChoBmgJaA9DCEuTUtDt+lpAlIaUUpRoFU3oA2gWR0CP5SIZ62ORdX2UKGgGaAloD0MIoMA7+fTGWECUhpRSlGgVTegDaBZHQI/rg2606YF1fZQoaAZoCWgPQwiscqHyr/VcQJSGlFKUaBVN6ANoFkdAj/xNpVS4v3V9lChoBmgJaA9DCDi+9syS4VlAlIaUUpRoFU3oA2gWR0CQBkd92HLzdX2UKGgGaAloD0MI2nOZmgQaY0CUhpRSlGgVTegDaBZHQJAG2/WUbDN1fZQoaAZoCWgPQwgVAU7v4v9gQJSGlFKUaBVN6ANoFkdAkJXiKR+z+nV9lChoBmgJaA9DCHRAEvbtZF9AlIaUUpRoFU3oA2gWR0CQmPPKdQO4dX2UKGgGaAloD0MItDwP7s5kYUCUhpRSlGgVTegDaBZHQJCZv/wRXfZ1fZQoaAZoCWgPQwiCqPsAJFllQJSGlFKUaBVN6ANoFkdAkJplyvLX+XV9lChoBmgJaA9DCBaKdD8nn2BAlIaUUpRoFU3oA2gWR0CQnQoybhFWdX2UKGgGaAloD0MI/WoOEMytOUCUhpRSlGgVTWUBaBZHQJCghMxoIv91fZQoaAZoCWgPQwhQq+gPTYdhQJSGlFKUaBVN6ANoFkdAkKQifYjB23V9lChoBmgJaA9DCGHe40yTe2VAlIaUUpRoFU3oA2gWR0CQpptwaR6odX2UKGgGaAloD0MI/fUKC+7TVUCUhpRSlGgVTegDaBZHQJC4ntRekYZ1fZQoaAZoCWgPQwhrZcIv9VtiQJSGlFKUaBVN6ANoFkdAkLjMDOkcj3V9lChoBmgJaA9DCKX3ja+9K2BAlIaUUpRoFU3oA2gWR0CQuebjcVQAdX2UKGgGaAloD0MI1NUdi23mVkCUhpRSlGgVTegDaBZHQJC7tFd9lVd1fZQoaAZoCWgPQwg50ENtGzRSQJSGlFKUaBVN6ANoFkdAkMR/Mr3CbnV9lChoBmgJaA9DCKJfWz/9uFxAlIaUUpRoFU3oA2gWR0CQx7jXFtKqdX2UKGgGaAloD0MIpkI8Ei+aWUCUhpRSlGgVTegDaBZHQJDbBnf2saN1fZQoaAZoCWgPQwgFGmzqPLFhQJSGlFKUaBVN6ANoFkdAkNu0NWluWXV9lChoBmgJaA9DCPAxWHGqnWBAlIaUUpRoFU3oA2gWR0CQ4aaOgg5jdX2UKGgGaAloD0MICW8PQsDxYkCUhpRSlGgVTegDaBZHQJDlLkhib2F1fZQoaAZoCWgPQwh/MVuyKgNeQJSGlFKUaBVN6ANoFkdAkOYQwCbMHXV9lChoBmgJaA9DCFUyAFTxY2BAlIaUUpRoFU3oA2gWR0CQ5r+wkgOjdX2UKGgGaAloD0MIIt+l1CVUZkCUhpRSlGgVTegDaBZHQJDpXRZ2ZAp1fZQoaAZoCWgPQwiKx0W1CBljQJSGlFKUaBVN6ANoFkdAkOyzC53C9HV9lChoBmgJaA9DCL37471qMl1AlIaUUpRoFU3oA2gWR0CQ8A5rgwXZdX2UKGgGaAloD0MIhdIXQs7BQECUhpRSlGgVTSgBaBZHQJDwmnuRcNZ1fZQoaAZoCWgPQwizCMVW0PpbQJSGlFKUaBVN6ANoFkdAkPInXZoPCnV9lChoBmgJaA9DCP66052nfWFAlIaUUpRoFU3oA2gWR0CRAfZuAI6bdX2UKGgGaAloD0MIFokJavgvWkCUhpRSlGgVTegDaBZHQJECIRODaoN1fZQoaAZoCWgPQwgt0VlmESZTQJSGlFKUaBVN6ANoFkdAkQMxpxm03XV9lChoBmgJaA9DCIl+bf10o2BAlIaUUpRoFU3oA2gWR0CRBOoF3Y+TdX2UKGgGaAloD0MIIR/0bFb9+D+UhpRSlGgVTYABaBZHQJELFNEgGKR1fZQoaAZoCWgPQwi5Fi1A2ypjQJSGlFKUaBVN6ANoFkdAkQ1otDlYEHV9lChoBmgJaA9DCNy3Wicu0lxAlIaUUpRoFU3oA2gWR0CREJFuNxVAdX2UKGgGaAloD0MITyLCvwhOYUCUhpRSlGgVTegDaBZHQJEkhi1Aqut1fZQoaAZoCWgPQwhwtU5cjgJdQJSGlFKUaBVN6ANoFkdAkbaJokAxSHV9lChoBmgJaA9DCC1cVmEzZ2NAlIaUUpRoFU3oA2gWR0CRueoTfzjFdX2UKGgGaAloD0MILQWk/Q9SY0CUhpRSlGgVTegDaBZHQJG6v0ulGgB1fZQoaAZoCWgPQwjPgeUIGcphQJSGlFKUaBVN6ANoFkdAkbtrRv3rU3V9lChoBmgJaA9DCOzeisQEQl5AlIaUUpRoFU3oA2gWR0CRvf6Skj5cdX2UKGgGaAloD0MIYhIu5BFNXUCUhpRSlGgVTegDaBZHQJHBNTgl4Tt1fZQoaAZoCWgPQwgrTUpBt3ZhQJSGlFKUaBVN6ANoFkdAkcUtthuwYHV9lChoBmgJaA9DCD+RJ0nX2F5AlIaUUpRoFU3oA2gWR0CRxvMKTjebdX2UKGgGaAloD0MILLr1mp7ob0CUhpRSlGgVTfUCaBZHQJHOOwFC9h91fZQoaAZoCWgPQwgXnpeKjfE4QJSGlFKUaBVNFAFoFkdAkdQ0J8fFJnV9lChoBmgJaA9DCLpnXaPl1lxAlIaUUpRoFU3oA2gWR0CR1wujRD1HdX2UKGgGaAloD0MIH7k16TadY0CUhpRSlGgVTegDaBZHQJHXMWl/H5t1fZQoaAZoCWgPQwj4wmSqYJVXQJSGlFKUaBVN6ANoFkdAkdgu3H7xeHV9lChoBmgJaA9DCI1BJ4QO0FxAlIaUUpRoFU3oA2gWR0CR2cqsEJSjdX2UKGgGaAloD0MIEDtT6DyEZkCUhpRSlGgVTagDaBZHQJHgPcHnln11fZQoaAZoCWgPQwhupkI8kslhQJSGlFKUaBVN6ANoFkdAkeGNBKL88HV9lChoBmgJaA9DCG7A54cRIhnAlIaUUpRoFUvXaBZHQJHlcXJo0yh1fZQoaAZoCWgPQwjP9BJjmfhAQJSGlFKUaBVL9GgWR0CR50hKlHjIdX2UKGgGaAloD0MIBoTWw1cvcECUhpRSlGgVTXwBaBZHQJHz0/dIoVp1fZQoaAZoCWgPQwi3mQrxSDz0v5SGlFKUaBVL12gWR0CR9L51vES/dX2UKGgGaAloD0MIinPU0fGfZECUhpRSlGgVTegDaBZHQJH1xLWZqmF1fZQoaAZoCWgPQwh5rBkZ5JtwQJSGlFKUaBVNewNoFkdAkfff20zCUHV9lChoBmgJaA9DCNRhhVu+ZGNAlIaUUpRoFU3oA2gWR0CR+3mfXf65dX2UKGgGaAloD0MI9pmzPuXAbECUhpRSlGgVTQ4DaBZHQJH9xK02LpB1fZQoaAZoCWgPQwhKYkm5+5dcQJSGlFKUaBVN6ANoFkdAkf6+jua4MHV9lChoBmgJaA9DCMwpATEJFV1AlIaUUpRoFU3oA2gWR0CSADfYBeXzdX2UKGgGaAloD0MI9mIoJ1o2YECUhpRSlGgVTegDaBZHQJIC510T1011fZQoaAZoCWgPQwgn3gGetNZOQJSGlFKUaBVL/2gWR0CSByTzd1uBdX2UKGgGaAloD0MIOX8TChGMXUCUhpRSlGgVTegDaBZHQJIKYCW/rSp1fZQoaAZoCWgPQwg7N23GaU5AQJSGlFKUaBVL9WgWR0CSC9bR4QjEdX2UKGgGaAloD0MIoYSZtn9QYkCUhpRSlGgVTegDaBZHQJITgh2W6bx1fZQoaAZoCWgPQwiyutVz0rs2wJSGlFKUaBVNOAFoFkdAkhOqXSjQA3V9lChoBmgJaA9DCLivA+eMYGJAlIaUUpRoFU3oA2gWR0CSGSq5sj3VdX2UKGgGaAloD0MIFY21v7OEX0CUhpRSlGgVTegDaBZHQJIc+YqoZQ51fZQoaAZoCWgPQwjVsN8Ta0RjQJSGlFKUaBVN6ANoFkdAkiWlUVBUrHV9lChoBmgJaA9DCGwhyEGJ72BAlIaUUpRoFU3oA2gWR0CSJxZDiOvMdX2UKGgGaAloD0MI5fBJJ5JEYUCUhpRSlGgVTegDaBZHQJItF9c8klh1fZQoaAZoCWgPQwi+v0F79e5iQJSGlFKUaBVN6ANoFkdAkjkMNlRP43V9lChoBmgJaA9DCMxgjEgUpmRAlIaUUpRoFU3oA2gWR0CSOeU+cH4XdX2UKGgGaAloD0MIJjRJLCnsXECUhpRSlGgVTegDaBZHQJI80jAzpHJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d1be3312bda752d36e0f72df330b28ea85012878272e489d9d63469bdbad99a
|
3 |
+
size 144102
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6d762c5a70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6d762c5b00>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6d762c5b90>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6d762c5c20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6d762c5cb0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6d762c5d40>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6d762c5dd0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6d762c5e60>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6d762c5ef0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6d762c5f80>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6d762cc050>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f6d76321090>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651711356.0758119,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNxh70pUEK6xA03uk0yu7Vanq05XdstNQAAgD8AAIA/TfClvR+VxbnCqdA6gP32NB35ursoDva5AACAPwAAgD9GHt8+/TFtPzeikD4Z+cy+IcBhPlMfabwAAAAAAAAAANpfYD7syeo8oBmUup/oV7lEtoM+1uHWOQAAgD8AAIA/DbadPeHkhLowz1A6k74yNZnkkbotHW65AACAPwAAgD9W1FS+iAq1vBcvjrtZN/G5BIIlPnYYvDoAAIA/AACAP+Bqgz4gLcw+hswgvn6aDb7B1668a4yMvQAAAAAAAAAAGpDEvfZcK7pGFza7S1RxtrJ2yjpQ5VI6AACAPwAAgD8AX8Q97FH+ufIRubtr1xA4oCUaO2VKjrYAAIA/AACAP9oThD3DkWS6oYG0tro/ArJUVZk6Y9LTNQAAgD8AAIA/RsFdPvYtVLyrNig7tAYXuXSQsr3lXka6AACAPwAAgD8tyTA+HH4ovDwVCDt37PC4gcOWvcZ/K7oAAIA/AACAP1Anv74/7wY/4FktPkMSfr68CPk7TXxFPgAAAAAAAAAALaJYvr1GA73m0Gq7guYPuvBDaD7Jp546AACAPwAAgD+azZw79hxHuuBclDvm1561WXzBuNHaq7oAAIA/AACAP0OCjj6fN827gIE8vt4mH77+3Iy915aKvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4pANpIu0YUCUhpRSlIwBbJRN6AOMAXSUR0CPE2ejEehgdX2UKGgGaAloD0MIS1tc47NnYUCUhpRSlGgVTegDaBZHQI829ZA6dUd1fZQoaAZoCWgPQwi28/3UeGn8v5SGlFKUaBVL3GgWR0CPN02G7BfsdX2UKGgGaAloD0MIA0GADB2UX0CUhpRSlGgVTegDaBZHQI89smdAgPp1fZQoaAZoCWgPQwhFEr2MYplYQJSGlFKUaBVN6ANoFkdAj1ENnwob43V9lChoBmgJaA9DCFsLs9BOMGBAlIaUUpRoFU3oA2gWR0CPWDuKGcnWdX2UKGgGaAloD0MIKxTpfk6NXECUhpRSlGgVTegDaBZHQI9tSqABkqd1fZQoaAZoCWgPQwgS290D9J1kQJSGlFKUaBVN6ANoFkdAj3/KsU7CBXV9lChoBmgJaA9DCEP/BBcrM1xAlIaUUpRoFU3oA2gWR0CPgQ8J2MbWdX2UKGgGaAloD0MI6nsNwfGwYkCUhpRSlGgVTegDaBZHQI+ME+cH4XZ1fZQoaAZoCWgPQwhS1QRR96piQJSGlFKUaBVN6ANoFkdAj45JSJj2BnV9lChoBmgJaA9DCAthNZYwxWZAlIaUUpRoFU3oA2gWR0CPkrtLteD4dX2UKGgGaAloD0MIWpvG9loXZECUhpRSlGgVTegDaBZHQI+UUKb8WKx1fZQoaAZoCWgPQwjwTdNnBx9aQJSGlFKUaBVN6ANoFkdAj5Wm5UcXFnV9lChoBmgJaA9DCM791eM+nWBAlIaUUpRoFU3oA2gWR0CPmqsRQJokdX2UKGgGaAloD0MIAMrfvSPgYECUhpRSlGgVTegDaBZHQI+hRrYXfqJ1fZQoaAZoCWgPQwhF2VvKeRdhQJSGlFKUaBVN6ANoFkdAj6hEtVaOgnV9lChoBmgJaA9DCL6DnziAPjrAlIaUUpRoFUvsaBZHQI+tAiLVFx51fZQoaAZoCWgPQwjpmPOMfdJfQJSGlFKUaBVN6ANoFkdAj84D9n9NvnV9lChoBmgJaA9DCHqobcMo02BAlIaUUpRoFU3oA2gWR0CPzlOh0yP/dX2UKGgGaAloD0MIWDuKc9SRKMCUhpRSlGgVTUoBaBZHQI/QYoXsPat1fZQoaAZoCWgPQwj76T9rfpdgQJSGlFKUaBVN6ANoFkdAj9PLPt2LYXV9lChoBmgJaA9DCEuTUtDt+lpAlIaUUpRoFU3oA2gWR0CP5SIZ62ORdX2UKGgGaAloD0MIoMA7+fTGWECUhpRSlGgVTegDaBZHQI/rg2606YF1fZQoaAZoCWgPQwiscqHyr/VcQJSGlFKUaBVN6ANoFkdAj/xNpVS4v3V9lChoBmgJaA9DCDi+9syS4VlAlIaUUpRoFU3oA2gWR0CQBkd92HLzdX2UKGgGaAloD0MI2nOZmgQaY0CUhpRSlGgVTegDaBZHQJAG2/WUbDN1fZQoaAZoCWgPQwgVAU7v4v9gQJSGlFKUaBVN6ANoFkdAkJXiKR+z+nV9lChoBmgJaA9DCHRAEvbtZF9AlIaUUpRoFU3oA2gWR0CQmPPKdQO4dX2UKGgGaAloD0MItDwP7s5kYUCUhpRSlGgVTegDaBZHQJCZv/wRXfZ1fZQoaAZoCWgPQwiCqPsAJFllQJSGlFKUaBVN6ANoFkdAkJplyvLX+XV9lChoBmgJaA9DCBaKdD8nn2BAlIaUUpRoFU3oA2gWR0CQnQoybhFWdX2UKGgGaAloD0MI/WoOEMytOUCUhpRSlGgVTWUBaBZHQJCghMxoIv91fZQoaAZoCWgPQwhQq+gPTYdhQJSGlFKUaBVN6ANoFkdAkKQifYjB23V9lChoBmgJaA9DCGHe40yTe2VAlIaUUpRoFU3oA2gWR0CQpptwaR6odX2UKGgGaAloD0MI/fUKC+7TVUCUhpRSlGgVTegDaBZHQJC4ntRekYZ1fZQoaAZoCWgPQwhrZcIv9VtiQJSGlFKUaBVN6ANoFkdAkLjMDOkcj3V9lChoBmgJaA9DCKX3ja+9K2BAlIaUUpRoFU3oA2gWR0CQuebjcVQAdX2UKGgGaAloD0MI1NUdi23mVkCUhpRSlGgVTegDaBZHQJC7tFd9lVd1fZQoaAZoCWgPQwg50ENtGzRSQJSGlFKUaBVN6ANoFkdAkMR/Mr3CbnV9lChoBmgJaA9DCKJfWz/9uFxAlIaUUpRoFU3oA2gWR0CQx7jXFtKqdX2UKGgGaAloD0MIpkI8Ei+aWUCUhpRSlGgVTegDaBZHQJDbBnf2saN1fZQoaAZoCWgPQwgFGmzqPLFhQJSGlFKUaBVN6ANoFkdAkNu0NWluWXV9lChoBmgJaA9DCPAxWHGqnWBAlIaUUpRoFU3oA2gWR0CQ4aaOgg5jdX2UKGgGaAloD0MICW8PQsDxYkCUhpRSlGgVTegDaBZHQJDlLkhib2F1fZQoaAZoCWgPQwh/MVuyKgNeQJSGlFKUaBVN6ANoFkdAkOYQwCbMHXV9lChoBmgJaA9DCFUyAFTxY2BAlIaUUpRoFU3oA2gWR0CQ5r+wkgOjdX2UKGgGaAloD0MIIt+l1CVUZkCUhpRSlGgVTegDaBZHQJDpXRZ2ZAp1fZQoaAZoCWgPQwiKx0W1CBljQJSGlFKUaBVN6ANoFkdAkOyzC53C9HV9lChoBmgJaA9DCL37471qMl1AlIaUUpRoFU3oA2gWR0CQ8A5rgwXZdX2UKGgGaAloD0MIhdIXQs7BQECUhpRSlGgVTSgBaBZHQJDwmnuRcNZ1fZQoaAZoCWgPQwizCMVW0PpbQJSGlFKUaBVN6ANoFkdAkPInXZoPCnV9lChoBmgJaA9DCP66052nfWFAlIaUUpRoFU3oA2gWR0CRAfZuAI6bdX2UKGgGaAloD0MIFokJavgvWkCUhpRSlGgVTegDaBZHQJECIRODaoN1fZQoaAZoCWgPQwgt0VlmESZTQJSGlFKUaBVN6ANoFkdAkQMxpxm03XV9lChoBmgJaA9DCIl+bf10o2BAlIaUUpRoFU3oA2gWR0CRBOoF3Y+TdX2UKGgGaAloD0MIIR/0bFb9+D+UhpRSlGgVTYABaBZHQJELFNEgGKR1fZQoaAZoCWgPQwi5Fi1A2ypjQJSGlFKUaBVN6ANoFkdAkQ1otDlYEHV9lChoBmgJaA9DCNy3Wicu0lxAlIaUUpRoFU3oA2gWR0CREJFuNxVAdX2UKGgGaAloD0MITyLCvwhOYUCUhpRSlGgVTegDaBZHQJEkhi1Aqut1fZQoaAZoCWgPQwhwtU5cjgJdQJSGlFKUaBVN6ANoFkdAkbaJokAxSHV9lChoBmgJaA9DCC1cVmEzZ2NAlIaUUpRoFU3oA2gWR0CRueoTfzjFdX2UKGgGaAloD0MILQWk/Q9SY0CUhpRSlGgVTegDaBZHQJG6v0ulGgB1fZQoaAZoCWgPQwjPgeUIGcphQJSGlFKUaBVN6ANoFkdAkbtrRv3rU3V9lChoBmgJaA9DCOzeisQEQl5AlIaUUpRoFU3oA2gWR0CRvf6Skj5cdX2UKGgGaAloD0MIYhIu5BFNXUCUhpRSlGgVTegDaBZHQJHBNTgl4Tt1fZQoaAZoCWgPQwgrTUpBt3ZhQJSGlFKUaBVN6ANoFkdAkcUtthuwYHV9lChoBmgJaA9DCD+RJ0nX2F5AlIaUUpRoFU3oA2gWR0CRxvMKTjebdX2UKGgGaAloD0MILLr1mp7ob0CUhpRSlGgVTfUCaBZHQJHOOwFC9h91fZQoaAZoCWgPQwgXnpeKjfE4QJSGlFKUaBVNFAFoFkdAkdQ0J8fFJnV9lChoBmgJaA9DCLpnXaPl1lxAlIaUUpRoFU3oA2gWR0CR1wujRD1HdX2UKGgGaAloD0MIH7k16TadY0CUhpRSlGgVTegDaBZHQJHXMWl/H5t1fZQoaAZoCWgPQwj4wmSqYJVXQJSGlFKUaBVN6ANoFkdAkdgu3H7xeHV9lChoBmgJaA9DCI1BJ4QO0FxAlIaUUpRoFU3oA2gWR0CR2cqsEJSjdX2UKGgGaAloD0MIEDtT6DyEZkCUhpRSlGgVTagDaBZHQJHgPcHnln11fZQoaAZoCWgPQwhupkI8kslhQJSGlFKUaBVN6ANoFkdAkeGNBKL88HV9lChoBmgJaA9DCG7A54cRIhnAlIaUUpRoFUvXaBZHQJHlcXJo0yh1fZQoaAZoCWgPQwjP9BJjmfhAQJSGlFKUaBVL9GgWR0CR50hKlHjIdX2UKGgGaAloD0MIBoTWw1cvcECUhpRSlGgVTXwBaBZHQJHz0/dIoVp1fZQoaAZoCWgPQwi3mQrxSDz0v5SGlFKUaBVL12gWR0CR9L51vES/dX2UKGgGaAloD0MIinPU0fGfZECUhpRSlGgVTegDaBZHQJH1xLWZqmF1fZQoaAZoCWgPQwh5rBkZ5JtwQJSGlFKUaBVNewNoFkdAkfff20zCUHV9lChoBmgJaA9DCNRhhVu+ZGNAlIaUUpRoFU3oA2gWR0CR+3mfXf65dX2UKGgGaAloD0MI9pmzPuXAbECUhpRSlGgVTQ4DaBZHQJH9xK02LpB1fZQoaAZoCWgPQwhKYkm5+5dcQJSGlFKUaBVN6ANoFkdAkf6+jua4MHV9lChoBmgJaA9DCMwpATEJFV1AlIaUUpRoFU3oA2gWR0CSADfYBeXzdX2UKGgGaAloD0MI9mIoJ1o2YECUhpRSlGgVTegDaBZHQJIC510T1011fZQoaAZoCWgPQwgn3gGetNZOQJSGlFKUaBVL/2gWR0CSByTzd1uBdX2UKGgGaAloD0MIOX8TChGMXUCUhpRSlGgVTegDaBZHQJIKYCW/rSp1fZQoaAZoCWgPQwg7N23GaU5AQJSGlFKUaBVL9WgWR0CSC9bR4QjEdX2UKGgGaAloD0MIoYSZtn9QYkCUhpRSlGgVTegDaBZHQJITgh2W6bx1fZQoaAZoCWgPQwiyutVz0rs2wJSGlFKUaBVNOAFoFkdAkhOqXSjQA3V9lChoBmgJaA9DCLivA+eMYGJAlIaUUpRoFU3oA2gWR0CSGSq5sj3VdX2UKGgGaAloD0MIFY21v7OEX0CUhpRSlGgVTegDaBZHQJIc+YqoZQ51fZQoaAZoCWgPQwjVsN8Ta0RjQJSGlFKUaBVN6ANoFkdAkiWlUVBUrHV9lChoBmgJaA9DCGwhyEGJ72BAlIaUUpRoFU3oA2gWR0CSJxZDiOvMdX2UKGgGaAloD0MI5fBJJ5JEYUCUhpRSlGgVTegDaBZHQJItF9c8klh1fZQoaAZoCWgPQwi+v0F79e5iQJSGlFKUaBVN6ANoFkdAkjkMNlRP43V9lChoBmgJaA9DCMxgjEgUpmRAlIaUUpRoFU3oA2gWR0CSOeU+cH4XdX2UKGgGaAloD0MIJjRJLCnsXECUhpRSlGgVTegDaBZHQJI80jAzpHJ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 160,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fcd98c91e46695fe30408cdf402bac87b15a74602f788103f286296f86965124
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:701a0c7b62f871aa113a6570ea905914cf6bbe3c70c19548cb49820939ec17f7
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:681dea856708566fbbe5c0c514961f4ec121bcf0e63c396ac20c1394f36c50ac
|
3 |
+
size 235374
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 188.34842722992116, "std_reward": 88.74059464934149, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T01:06:40.205779"}
|