ghunkins commited on
Commit
3081e7a
·
verified ·
1 Parent(s): 235556c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -50
README.md CHANGED
@@ -2,61 +2,19 @@
2
  library_name: diffusers
3
  ---
4
 
5
- # 👋 HyVideo
6
 
7
- This project is a first step in integrating [HunyuanVideo](https://github.com/Tencent/HunyuanVideo) into [Diffusers](https://github.com/huggingface/diffusers).
8
-
9
- **All credit go to [Tencent](https://github.com/Tencent) for the original [HunyuanVideo](https://github.com/Tencent/HunyuanVideo) project.**
10
-
11
- **Thank you to Huggingface for the [Diffusers](https://github.com/huggingface/diffusers) library.** Special shout-out to [@a-r-r-o-w](https://github.com/a-r-r-o-w) for his work on integrating HunyuanVideo.
12
-
13
- The License is inherted from [HunyuanVideo](https://github.com/Tencent/HunyuanVideo).
14
-
15
- This library is provided as-is and will be superseded by the official release of HunyuanVideo via [Diffusers](https://github.com/huggingface/diffusers). Please help out if you can on the [PR](https://github.com/huggingface/diffusers/pull/10136).
16
-
17
-
18
- ## Installation
19
 
20
  ```bash
21
- pip install git+https://github.com/ollanoinc/hyvideo.git
22
  ```
23
 
24
- You will also need to install [flash-attn](https://github.com/Dao-AILab/flash-attention) for now.
25
-
26
- ## Usage
27
-
28
- Please note that you need at least 80GB VRAM to run this pipeline. CPU offloading is having issues at the moment (PRs welcome!).
29
-
30
  ```python
31
  import torch
32
- from hyvideo.diffusion.pipelines.pipeline_hunyuan_video import HunyuanVideoPipeline
33
- from hyvideo.modules.models import HYVideoDiffusionTransformer
34
- from hyvideo.vae.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
35
-
36
  pipe = HunyuanVideoPipeline.from_pretrained(
37
- 'magespace/hyvideo-diffusers',
38
- transformer=HYVideoDiffusionTransformer.from_pretrained(
39
- 'magespace/hyvideo-diffusers',
40
- torch_dtype=torch.bfloat16,
41
- subfolder='transformer'
42
- ),
43
- vae=AutoencoderKLCausal3D.from_pretrained(
44
- 'magespace/hyvideo-diffusers',
45
- torch_dtype=torch.bfloat16,
46
- subfolder='vae'
47
- ),
48
  torch_dtype=torch.bfloat16,
49
  )
50
- pipe = pipe.to('cuda')
51
- pipe.vae.enable_tiling()
52
- ```
53
-
54
- Then running:
55
-
56
- ```python
57
- prompt = "Close-up, A little girl wearing a red hoodie in winter strikes a match. The sky is dark, there is a layer of snow on the ground, and it is still snowing lightly. The flame of the match flickers, illuminating the girl's face intermittently."
58
-
59
- result = pipe(prompt)
60
  ```
61
 
62
  Post-processing:
@@ -65,11 +23,7 @@ Post-processing:
65
  import PIL.Image
66
  from diffusers.utils import export_to_video
67
 
68
- output = result.videos[0].permute(1, 2, 3, 0).detach().cpu().numpy()
69
- output = (output * 255).clip(0, 255).astype("uint8")
70
- output = [PIL.Image.fromarray(x) for x in output]
71
-
72
- export_to_video(output, "output.mp4", fps=24)
73
  ```
74
 
75
  For faster generation, you can optimize the `transformer` with `torch.compile`. Additionally, increasing `shift` in the scheduler can allow for lower step values as shown in the original paper.
 
2
  library_name: diffusers
3
  ---
4
 
5
+ This is a development model meant to help test the HunyuanVideoPipeline integration to diffusers. Please help out if you can on the [PR](https://github.com/huggingface/diffusers/pull/10136).
6
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  ```bash
9
+ pip install -qq git+https://github.com/huggingface/diffusers.git@hunyuan-video
10
  ```
11
 
 
 
 
 
 
 
12
  ```python
13
  import torch
 
 
 
 
14
  pipe = HunyuanVideoPipeline.from_pretrained(
15
+ "magespace/hyvideo-diffusers-dev",
 
 
 
 
 
 
 
 
 
 
16
  torch_dtype=torch.bfloat16,
17
  )
 
 
 
 
 
 
 
 
 
 
18
  ```
19
 
20
  Post-processing:
 
23
  import PIL.Image
24
  from diffusers.utils import export_to_video
25
 
26
+ export_to_video(result.frames[0], "output.mp4", fps=24)
 
 
 
 
27
  ```
28
 
29
  For faster generation, you can optimize the `transformer` with `torch.compile`. Additionally, increasing `shift` in the scheduler can allow for lower step values as shown in the original paper.