mac999 commited on
Commit
50e147d
·
verified ·
1 Parent(s): 1ce4585

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -4
README.md CHANGED
@@ -52,9 +52,13 @@ The ENA is detailed in the paper *Earthwork Network Architecture (ENA): Research
52
  ## Usage
53
 
54
  ### Prerequisites
55
- - **Programming Language**: Python 3.8 or above.
56
  - **Libraries**: Install the required libraries using `pip install`. Detailed dependencies will be provided in the code files.
57
-
 
 
 
 
58
  ### Data Preparation
59
  1. **Prepare Train Dataset**:
60
  - Prepare CAD cross-sectional drawings as input files and load it on Autocad. Run the below program to extract the entities per each cross-section in the drawing. In addition, you can define the earthwork item's layer name in config.json.
@@ -67,7 +71,7 @@ The ENA is detailed in the paper *Earthwork Network Architecture (ENA): Research
67
  python prepare_dataset.py --input output/ --output dataset/
68
  ```
69
 
70
- 2. **Training Data**:
71
  - Features are tokenized into sequences for MLP, LSTM, Transformers, and LLM models. We'll upload the train source file after arrangement.
72
  ```bash
73
  python train_ena_model.py --model_type [MLP|LSTM|Transformer|LLM]
@@ -76,7 +80,7 @@ The ENA is detailed in the paper *Earthwork Network Architecture (ENA): Research
76
  3. **Run and Test ENA model**:
77
  - Run the below program to run and test the each ENA model. It will generate log and graph image files to check the performance.
78
  ```bash
79
- python ena_run_model.py --model_type [MLP|LSTM|Transformer|LLM]
80
  ```
81
 
82
  ### Training and Evaluation
 
52
  ## Usage
53
 
54
  ### Prerequisites
55
+ - **Programming Language**: Python 3.8 or above. PyTorch (torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118)
56
  - **Libraries**: Install the required libraries using `pip install`. Detailed dependencies will be provided in the code files.
57
+ ```bash
58
+ pip install json os re logging torch numpy matplotlib seaborn transformers scikit-learn tqdm
59
+ pip install pandas scipy trimesh laspy open3d pyautocad pywin32
60
+ ```
61
+
62
  ### Data Preparation
63
  1. **Prepare Train Dataset**:
64
  - Prepare CAD cross-sectional drawings as input files and load it on Autocad. Run the below program to extract the entities per each cross-section in the drawing. In addition, you can define the earthwork item's layer name in config.json.
 
71
  python prepare_dataset.py --input output/ --output dataset/
72
  ```
73
 
74
+ 2. **Training Data (TBD)**:
75
  - Features are tokenized into sequences for MLP, LSTM, Transformers, and LLM models. We'll upload the train source file after arrangement.
76
  ```bash
77
  python train_ena_model.py --model_type [MLP|LSTM|Transformer|LLM]
 
80
  3. **Run and Test ENA model**:
81
  - Run the below program to run and test the each ENA model. It will generate log and graph image files to check the performance.
82
  ```bash
83
+ python ena_run_model.py
84
  ```
85
 
86
  ### Training and Evaluation