Update README.md
Browse files
README.md
CHANGED
@@ -52,9 +52,13 @@ The ENA is detailed in the paper *Earthwork Network Architecture (ENA): Research
|
|
52 |
## Usage
|
53 |
|
54 |
### Prerequisites
|
55 |
-
- **Programming Language**: Python 3.8 or above.
|
56 |
- **Libraries**: Install the required libraries using `pip install`. Detailed dependencies will be provided in the code files.
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
### Data Preparation
|
59 |
1. **Prepare Train Dataset**:
|
60 |
- Prepare CAD cross-sectional drawings as input files and load it on Autocad. Run the below program to extract the entities per each cross-section in the drawing. In addition, you can define the earthwork item's layer name in config.json.
|
@@ -67,7 +71,7 @@ The ENA is detailed in the paper *Earthwork Network Architecture (ENA): Research
|
|
67 |
python prepare_dataset.py --input output/ --output dataset/
|
68 |
```
|
69 |
|
70 |
-
2. **Training Data**:
|
71 |
- Features are tokenized into sequences for MLP, LSTM, Transformers, and LLM models. We'll upload the train source file after arrangement.
|
72 |
```bash
|
73 |
python train_ena_model.py --model_type [MLP|LSTM|Transformer|LLM]
|
@@ -76,7 +80,7 @@ The ENA is detailed in the paper *Earthwork Network Architecture (ENA): Research
|
|
76 |
3. **Run and Test ENA model**:
|
77 |
- Run the below program to run and test the each ENA model. It will generate log and graph image files to check the performance.
|
78 |
```bash
|
79 |
-
python ena_run_model.py
|
80 |
```
|
81 |
|
82 |
### Training and Evaluation
|
|
|
52 |
## Usage
|
53 |
|
54 |
### Prerequisites
|
55 |
+
- **Programming Language**: Python 3.8 or above. PyTorch (torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118)
|
56 |
- **Libraries**: Install the required libraries using `pip install`. Detailed dependencies will be provided in the code files.
|
57 |
+
```bash
|
58 |
+
pip install json os re logging torch numpy matplotlib seaborn transformers scikit-learn tqdm
|
59 |
+
pip install pandas scipy trimesh laspy open3d pyautocad pywin32
|
60 |
+
```
|
61 |
+
|
62 |
### Data Preparation
|
63 |
1. **Prepare Train Dataset**:
|
64 |
- Prepare CAD cross-sectional drawings as input files and load it on Autocad. Run the below program to extract the entities per each cross-section in the drawing. In addition, you can define the earthwork item's layer name in config.json.
|
|
|
71 |
python prepare_dataset.py --input output/ --output dataset/
|
72 |
```
|
73 |
|
74 |
+
2. **Training Data (TBD)**:
|
75 |
- Features are tokenized into sequences for MLP, LSTM, Transformers, and LLM models. We'll upload the train source file after arrangement.
|
76 |
```bash
|
77 |
python train_ena_model.py --model_type [MLP|LSTM|Transformer|LLM]
|
|
|
80 |
3. **Run and Test ENA model**:
|
81 |
- Run the below program to run and test the each ENA model. It will generate log and graph image files to check the performance.
|
82 |
```bash
|
83 |
+
python ena_run_model.py
|
84 |
```
|
85 |
|
86 |
### Training and Evaluation
|