Training complete
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [mHossain/bengali_pos_v1_400000](https://huggingface.co/mHossain/bengali_pos_v1_400000) on the pos_tag_100k dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -76,11 +76,11 @@ The following hyperparameters were used during training:
|
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
-
| Training Loss | Epoch | Step
|
80 |
-
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
|
85 |
|
86 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.7517491791092168
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.7532968740056972
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.752522230781312
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.8148741068930406
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [mHossain/bengali_pos_v1_400000](https://huggingface.co/mHossain/bengali_pos_v1_400000) on the pos_tag_100k dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.6185
|
47 |
+
- Precision: 0.7517
|
48 |
+
- Recall: 0.7533
|
49 |
+
- F1: 0.7525
|
50 |
+
- Accuracy: 0.8149
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.6508 | 1.0 | 67500 | 0.6325 | 0.7386 | 0.7396 | 0.7391 | 0.8041 |
|
82 |
+
| 0.5713 | 2.0 | 135000 | 0.6093 | 0.7487 | 0.7500 | 0.7493 | 0.8123 |
|
83 |
+
| 0.4789 | 3.0 | 202500 | 0.6185 | 0.7517 | 0.7533 | 0.7525 | 0.8149 |
|
84 |
|
85 |
|
86 |
### Framework versions
|