draft imagedream, before merge
Browse files- README.md +12 -1
- convert_imagedream_to_diffusers.py +561 -0
- imagedream/adaptor.py +141 -0
- imagedream/attention.py +84 -221
- imagedream/models.py +42 -23
- imagedream/pipeline_imagedream.py +64 -15
README.md
CHANGED
@@ -8,11 +8,22 @@ modified from https://github.com/KokeCacao/mvdream-hf.
|
|
8 |
pip install -U omegaconf diffusers safetensors huggingface_hub transformers accelerate
|
9 |
|
10 |
# download original ckpt
|
|
|
11 |
wget https://huggingface.co/MVDream/MVDream/resolve/main/sd-v2.1-base-4view.pt
|
12 |
wget https://raw.githubusercontent.com/bytedance/MVDream/main/mvdream/configs/sd-v2-base.yaml
|
|
|
13 |
|
14 |
# convert
|
15 |
-
python convert_mvdream_to_diffusers.py --checkpoint_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
```
|
17 |
|
18 |
### usage
|
|
|
8 |
pip install -U omegaconf diffusers safetensors huggingface_hub transformers accelerate
|
9 |
|
10 |
# download original ckpt
|
11 |
+
cd models
|
12 |
wget https://huggingface.co/MVDream/MVDream/resolve/main/sd-v2.1-base-4view.pt
|
13 |
wget https://raw.githubusercontent.com/bytedance/MVDream/main/mvdream/configs/sd-v2-base.yaml
|
14 |
+
cd ..
|
15 |
|
16 |
# convert
|
17 |
+
python convert_mvdream_to_diffusers.py --checkpoint_path models/sd-v2.1-base-4view.pt --dump_path ./weights_mvdream --original_config_file models/sd-v2-base.yaml --half --to_safetensors --test
|
18 |
+
```
|
19 |
+
|
20 |
+
```bash
|
21 |
+
# download original ckpt
|
22 |
+
wget https://huggingface.co/Peng-Wang/ImageDream/resolve/main/sd-v2.1-base-4view-ipmv-local.pt
|
23 |
+
wget https://raw.githubusercontent.com/bytedance/ImageDream/main/extern/ImageDream/imagedream/configs/sd_v2_base_ipmv_local.yaml
|
24 |
+
|
25 |
+
# convert
|
26 |
+
python convert_imagedream_to_diffusers.py --checkpoint_path models/sd-v2.1-base-4view-ipmv-local.pt --dump_path ./weights_imagedream --original_config_file models/sd-v2-base_ipmv_local.yaml --half --to_safetensors --test
|
27 |
```
|
28 |
|
29 |
### usage
|
convert_imagedream_to_diffusers.py
ADDED
@@ -0,0 +1,561 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from https://github.com/huggingface/diffusers/blob/bc691231360a4cbc7d19a58742ebb8ed0f05e027/scripts/convert_original_stable_diffusion_to_diffusers.py
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
import torch
|
5 |
+
import sys
|
6 |
+
|
7 |
+
sys.path.insert(0, ".")
|
8 |
+
|
9 |
+
from diffusers.models import (
|
10 |
+
AutoencoderKL,
|
11 |
+
)
|
12 |
+
from omegaconf import OmegaConf
|
13 |
+
from diffusers.schedulers import DDIMScheduler
|
14 |
+
from diffusers.utils import logging
|
15 |
+
from typing import Any
|
16 |
+
from accelerate import init_empty_weights
|
17 |
+
from accelerate.utils import set_module_tensor_to_device
|
18 |
+
from imagedream.models import MultiViewUNetModel
|
19 |
+
from imagedream.pipeline_imagedream import ImageDreamPipeline
|
20 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPFeatureExtractor
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
def assign_to_checkpoint(
|
26 |
+
paths,
|
27 |
+
checkpoint,
|
28 |
+
old_checkpoint,
|
29 |
+
attention_paths_to_split=None,
|
30 |
+
additional_replacements=None,
|
31 |
+
config=None,
|
32 |
+
):
|
33 |
+
"""
|
34 |
+
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
|
35 |
+
attention layers, and takes into account additional replacements that may arise.
|
36 |
+
Assigns the weights to the new checkpoint.
|
37 |
+
"""
|
38 |
+
assert isinstance(
|
39 |
+
paths, list
|
40 |
+
), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
41 |
+
|
42 |
+
# Splits the attention layers into three variables.
|
43 |
+
if attention_paths_to_split is not None:
|
44 |
+
for path, path_map in attention_paths_to_split.items():
|
45 |
+
old_tensor = old_checkpoint[path]
|
46 |
+
channels = old_tensor.shape[0] // 3
|
47 |
+
|
48 |
+
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
49 |
+
|
50 |
+
assert config is not None
|
51 |
+
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
52 |
+
|
53 |
+
old_tensor = old_tensor.reshape(
|
54 |
+
(num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]
|
55 |
+
)
|
56 |
+
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
57 |
+
|
58 |
+
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
59 |
+
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
60 |
+
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
61 |
+
|
62 |
+
for path in paths:
|
63 |
+
new_path = path["new"]
|
64 |
+
|
65 |
+
# These have already been assigned
|
66 |
+
if (
|
67 |
+
attention_paths_to_split is not None
|
68 |
+
and new_path in attention_paths_to_split
|
69 |
+
):
|
70 |
+
continue
|
71 |
+
|
72 |
+
# Global renaming happens here
|
73 |
+
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
74 |
+
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
75 |
+
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
76 |
+
|
77 |
+
if additional_replacements is not None:
|
78 |
+
for replacement in additional_replacements:
|
79 |
+
new_path = new_path.replace(replacement["old"], replacement["new"])
|
80 |
+
|
81 |
+
# proj_attn.weight has to be converted from conv 1D to linear
|
82 |
+
is_attn_weight = "proj_attn.weight" in new_path or (
|
83 |
+
"attentions" in new_path and "to_" in new_path
|
84 |
+
)
|
85 |
+
shape = old_checkpoint[path["old"]].shape
|
86 |
+
if is_attn_weight and len(shape) == 3:
|
87 |
+
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
88 |
+
elif is_attn_weight and len(shape) == 4:
|
89 |
+
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0]
|
90 |
+
else:
|
91 |
+
checkpoint[new_path] = old_checkpoint[path["old"]]
|
92 |
+
|
93 |
+
|
94 |
+
def shave_segments(path, n_shave_prefix_segments=1):
|
95 |
+
"""
|
96 |
+
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
97 |
+
"""
|
98 |
+
if n_shave_prefix_segments >= 0:
|
99 |
+
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
100 |
+
else:
|
101 |
+
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
102 |
+
|
103 |
+
|
104 |
+
def create_vae_diffusers_config(original_config, image_size: int):
|
105 |
+
"""
|
106 |
+
Creates a config for the diffusers based on the config of the LDM model.
|
107 |
+
"""
|
108 |
+
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
109 |
+
_ = original_config.model.params.first_stage_config.params.embed_dim
|
110 |
+
|
111 |
+
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
|
112 |
+
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
113 |
+
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
114 |
+
|
115 |
+
config = {
|
116 |
+
"sample_size": image_size,
|
117 |
+
"in_channels": vae_params.in_channels,
|
118 |
+
"out_channels": vae_params.out_ch,
|
119 |
+
"down_block_types": tuple(down_block_types),
|
120 |
+
"up_block_types": tuple(up_block_types),
|
121 |
+
"block_out_channels": tuple(block_out_channels),
|
122 |
+
"latent_channels": vae_params.z_channels,
|
123 |
+
"layers_per_block": vae_params.num_res_blocks,
|
124 |
+
}
|
125 |
+
return config
|
126 |
+
|
127 |
+
|
128 |
+
def convert_ldm_vae_checkpoint(checkpoint, config):
|
129 |
+
# extract state dict for VAE
|
130 |
+
vae_state_dict = {}
|
131 |
+
vae_key = "first_stage_model."
|
132 |
+
keys = list(checkpoint.keys())
|
133 |
+
for key in keys:
|
134 |
+
if key.startswith(vae_key):
|
135 |
+
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
136 |
+
|
137 |
+
new_checkpoint = {}
|
138 |
+
|
139 |
+
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
140 |
+
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
141 |
+
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[
|
142 |
+
"encoder.conv_out.weight"
|
143 |
+
]
|
144 |
+
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
145 |
+
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[
|
146 |
+
"encoder.norm_out.weight"
|
147 |
+
]
|
148 |
+
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[
|
149 |
+
"encoder.norm_out.bias"
|
150 |
+
]
|
151 |
+
|
152 |
+
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
153 |
+
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
154 |
+
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[
|
155 |
+
"decoder.conv_out.weight"
|
156 |
+
]
|
157 |
+
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
158 |
+
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[
|
159 |
+
"decoder.norm_out.weight"
|
160 |
+
]
|
161 |
+
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[
|
162 |
+
"decoder.norm_out.bias"
|
163 |
+
]
|
164 |
+
|
165 |
+
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
166 |
+
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
167 |
+
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
168 |
+
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
169 |
+
|
170 |
+
# Retrieves the keys for the encoder down blocks only
|
171 |
+
num_down_blocks = len(
|
172 |
+
{
|
173 |
+
".".join(layer.split(".")[:3])
|
174 |
+
for layer in vae_state_dict
|
175 |
+
if "encoder.down" in layer
|
176 |
+
}
|
177 |
+
)
|
178 |
+
down_blocks = {
|
179 |
+
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key]
|
180 |
+
for layer_id in range(num_down_blocks)
|
181 |
+
}
|
182 |
+
|
183 |
+
# Retrieves the keys for the decoder up blocks only
|
184 |
+
num_up_blocks = len(
|
185 |
+
{
|
186 |
+
".".join(layer.split(".")[:3])
|
187 |
+
for layer in vae_state_dict
|
188 |
+
if "decoder.up" in layer
|
189 |
+
}
|
190 |
+
)
|
191 |
+
up_blocks = {
|
192 |
+
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key]
|
193 |
+
for layer_id in range(num_up_blocks)
|
194 |
+
}
|
195 |
+
|
196 |
+
for i in range(num_down_blocks):
|
197 |
+
resnets = [
|
198 |
+
key
|
199 |
+
for key in down_blocks[i]
|
200 |
+
if f"down.{i}" in key and f"down.{i}.downsample" not in key
|
201 |
+
]
|
202 |
+
|
203 |
+
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
204 |
+
new_checkpoint[
|
205 |
+
f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"
|
206 |
+
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight")
|
207 |
+
new_checkpoint[
|
208 |
+
f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"
|
209 |
+
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias")
|
210 |
+
|
211 |
+
paths = renew_vae_resnet_paths(resnets)
|
212 |
+
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
213 |
+
assign_to_checkpoint(
|
214 |
+
paths,
|
215 |
+
new_checkpoint,
|
216 |
+
vae_state_dict,
|
217 |
+
additional_replacements=[meta_path],
|
218 |
+
config=config,
|
219 |
+
)
|
220 |
+
|
221 |
+
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
222 |
+
num_mid_res_blocks = 2
|
223 |
+
for i in range(1, num_mid_res_blocks + 1):
|
224 |
+
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
225 |
+
|
226 |
+
paths = renew_vae_resnet_paths(resnets)
|
227 |
+
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
228 |
+
assign_to_checkpoint(
|
229 |
+
paths,
|
230 |
+
new_checkpoint,
|
231 |
+
vae_state_dict,
|
232 |
+
additional_replacements=[meta_path],
|
233 |
+
config=config,
|
234 |
+
)
|
235 |
+
|
236 |
+
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
237 |
+
paths = renew_vae_attention_paths(mid_attentions)
|
238 |
+
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
239 |
+
assign_to_checkpoint(
|
240 |
+
paths,
|
241 |
+
new_checkpoint,
|
242 |
+
vae_state_dict,
|
243 |
+
additional_replacements=[meta_path],
|
244 |
+
config=config,
|
245 |
+
)
|
246 |
+
conv_attn_to_linear(new_checkpoint)
|
247 |
+
|
248 |
+
for i in range(num_up_blocks):
|
249 |
+
block_id = num_up_blocks - 1 - i
|
250 |
+
resnets = [
|
251 |
+
key
|
252 |
+
for key in up_blocks[block_id]
|
253 |
+
if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
254 |
+
]
|
255 |
+
|
256 |
+
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
257 |
+
new_checkpoint[
|
258 |
+
f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"
|
259 |
+
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"]
|
260 |
+
new_checkpoint[
|
261 |
+
f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"
|
262 |
+
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"]
|
263 |
+
|
264 |
+
paths = renew_vae_resnet_paths(resnets)
|
265 |
+
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
266 |
+
assign_to_checkpoint(
|
267 |
+
paths,
|
268 |
+
new_checkpoint,
|
269 |
+
vae_state_dict,
|
270 |
+
additional_replacements=[meta_path],
|
271 |
+
config=config,
|
272 |
+
)
|
273 |
+
|
274 |
+
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
275 |
+
num_mid_res_blocks = 2
|
276 |
+
for i in range(1, num_mid_res_blocks + 1):
|
277 |
+
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
278 |
+
|
279 |
+
paths = renew_vae_resnet_paths(resnets)
|
280 |
+
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
281 |
+
assign_to_checkpoint(
|
282 |
+
paths,
|
283 |
+
new_checkpoint,
|
284 |
+
vae_state_dict,
|
285 |
+
additional_replacements=[meta_path],
|
286 |
+
config=config,
|
287 |
+
)
|
288 |
+
|
289 |
+
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
290 |
+
paths = renew_vae_attention_paths(mid_attentions)
|
291 |
+
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
292 |
+
assign_to_checkpoint(
|
293 |
+
paths,
|
294 |
+
new_checkpoint,
|
295 |
+
vae_state_dict,
|
296 |
+
additional_replacements=[meta_path],
|
297 |
+
config=config,
|
298 |
+
)
|
299 |
+
conv_attn_to_linear(new_checkpoint)
|
300 |
+
return new_checkpoint
|
301 |
+
|
302 |
+
|
303 |
+
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
304 |
+
"""
|
305 |
+
Updates paths inside resnets to the new naming scheme (local renaming)
|
306 |
+
"""
|
307 |
+
mapping = []
|
308 |
+
for old_item in old_list:
|
309 |
+
new_item = old_item
|
310 |
+
|
311 |
+
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
|
312 |
+
new_item = shave_segments(
|
313 |
+
new_item, n_shave_prefix_segments=n_shave_prefix_segments
|
314 |
+
)
|
315 |
+
|
316 |
+
mapping.append({"old": old_item, "new": new_item})
|
317 |
+
|
318 |
+
return mapping
|
319 |
+
|
320 |
+
|
321 |
+
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
322 |
+
"""
|
323 |
+
Updates paths inside attentions to the new naming scheme (local renaming)
|
324 |
+
"""
|
325 |
+
mapping = []
|
326 |
+
for old_item in old_list:
|
327 |
+
new_item = old_item
|
328 |
+
|
329 |
+
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
330 |
+
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
331 |
+
|
332 |
+
new_item = new_item.replace("q.weight", "to_q.weight")
|
333 |
+
new_item = new_item.replace("q.bias", "to_q.bias")
|
334 |
+
|
335 |
+
new_item = new_item.replace("k.weight", "to_k.weight")
|
336 |
+
new_item = new_item.replace("k.bias", "to_k.bias")
|
337 |
+
|
338 |
+
new_item = new_item.replace("v.weight", "to_v.weight")
|
339 |
+
new_item = new_item.replace("v.bias", "to_v.bias")
|
340 |
+
|
341 |
+
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
|
342 |
+
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
|
343 |
+
|
344 |
+
new_item = shave_segments(
|
345 |
+
new_item, n_shave_prefix_segments=n_shave_prefix_segments
|
346 |
+
)
|
347 |
+
|
348 |
+
mapping.append({"old": old_item, "new": new_item})
|
349 |
+
|
350 |
+
return mapping
|
351 |
+
|
352 |
+
|
353 |
+
def conv_attn_to_linear(checkpoint):
|
354 |
+
keys = list(checkpoint.keys())
|
355 |
+
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
356 |
+
for key in keys:
|
357 |
+
if ".".join(key.split(".")[-2:]) in attn_keys:
|
358 |
+
if checkpoint[key].ndim > 2:
|
359 |
+
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
360 |
+
elif "proj_attn.weight" in key:
|
361 |
+
if checkpoint[key].ndim > 2:
|
362 |
+
checkpoint[key] = checkpoint[key][:, :, 0]
|
363 |
+
|
364 |
+
|
365 |
+
def create_unet_config(original_config) -> Any:
|
366 |
+
return OmegaConf.to_container(
|
367 |
+
original_config.model.params.unet_config.params, resolve=True
|
368 |
+
)
|
369 |
+
|
370 |
+
|
371 |
+
def convert_from_original_imagedream_ckpt(checkpoint_path, original_config_file, device):
|
372 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
373 |
+
# print(f"Checkpoint: {checkpoint.keys()}")
|
374 |
+
torch.cuda.empty_cache()
|
375 |
+
|
376 |
+
original_config = OmegaConf.load(original_config_file)
|
377 |
+
# print(f"Original Config: {original_config}")
|
378 |
+
prediction_type = "epsilon"
|
379 |
+
image_size = 256
|
380 |
+
num_train_timesteps = (
|
381 |
+
getattr(original_config.model.params, "timesteps", None) or 1000
|
382 |
+
)
|
383 |
+
beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02
|
384 |
+
beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085
|
385 |
+
scheduler = DDIMScheduler(
|
386 |
+
beta_end=beta_end,
|
387 |
+
beta_schedule="scaled_linear",
|
388 |
+
beta_start=beta_start,
|
389 |
+
num_train_timesteps=num_train_timesteps,
|
390 |
+
steps_offset=1,
|
391 |
+
clip_sample=False,
|
392 |
+
set_alpha_to_one=False,
|
393 |
+
prediction_type=prediction_type,
|
394 |
+
)
|
395 |
+
scheduler.register_to_config(clip_sample=False)
|
396 |
+
|
397 |
+
# Convert the UNet2DConditionModel model.
|
398 |
+
# upcast_attention = None
|
399 |
+
# unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
|
400 |
+
# unet_config["upcast_attention"] = upcast_attention
|
401 |
+
# with init_empty_weights():
|
402 |
+
# unet = UNet2DConditionModel(**unet_config)
|
403 |
+
# converted_unet_checkpoint = convert_ldm_unet_checkpoint(
|
404 |
+
# checkpoint, unet_config, path=None, extract_ema=extract_ema
|
405 |
+
# )
|
406 |
+
# print(f"Unet Config: {original_config.model.params.unet_config.params}")
|
407 |
+
unet_config = create_unet_config(original_config)
|
408 |
+
|
409 |
+
# remove unused configs
|
410 |
+
del unet_config['legacy']
|
411 |
+
del unet_config['use_linear_in_transformer']
|
412 |
+
del unet_config['use_spatial_transformer']
|
413 |
+
del unet_config['ip_mode']
|
414 |
+
|
415 |
+
unet = MultiViewUNetModel(**unet_config)
|
416 |
+
unet.register_to_config(**unet_config)
|
417 |
+
# print(f"Unet State Dict: {unet.state_dict().keys()}")
|
418 |
+
unet.load_state_dict(
|
419 |
+
{
|
420 |
+
key.replace("model.diffusion_model.", ""): value
|
421 |
+
for key, value in checkpoint.items()
|
422 |
+
if key.replace("model.diffusion_model.", "") in unet.state_dict()
|
423 |
+
}
|
424 |
+
)
|
425 |
+
for param_name, param in unet.state_dict().items():
|
426 |
+
set_module_tensor_to_device(unet, param_name, device=device, value=param)
|
427 |
+
|
428 |
+
# Convert the VAE model.
|
429 |
+
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
|
430 |
+
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
|
431 |
+
|
432 |
+
if (
|
433 |
+
"model" in original_config
|
434 |
+
and "params" in original_config.model
|
435 |
+
and "scale_factor" in original_config.model.params
|
436 |
+
):
|
437 |
+
vae_scaling_factor = original_config.model.params.scale_factor
|
438 |
+
else:
|
439 |
+
vae_scaling_factor = 0.18215 # default SD scaling factor
|
440 |
+
|
441 |
+
vae_config["scaling_factor"] = vae_scaling_factor
|
442 |
+
|
443 |
+
with init_empty_weights():
|
444 |
+
vae = AutoencoderKL(**vae_config)
|
445 |
+
|
446 |
+
for param_name, param in converted_vae_checkpoint.items():
|
447 |
+
set_module_tensor_to_device(vae, param_name, device=device, value=param)
|
448 |
+
|
449 |
+
|
450 |
+
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="tokenizer")
|
451 |
+
text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="text_encoder").to(device=device) # type: ignore
|
452 |
+
|
453 |
+
# this is the clip used by sd2.1
|
454 |
+
feature_extractor: CLIPFeatureExtractor = CLIPFeatureExtractor.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
|
455 |
+
image_encoder: CLIPVisionModel = CLIPVisionModel.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
|
456 |
+
|
457 |
+
pipe = ImageDreamPipeline(
|
458 |
+
vae=vae,
|
459 |
+
unet=unet,
|
460 |
+
tokenizer=tokenizer,
|
461 |
+
text_encoder=text_encoder,
|
462 |
+
scheduler=scheduler,
|
463 |
+
feature_extractor=feature_extractor,
|
464 |
+
image_encoder=image_encoder,
|
465 |
+
)
|
466 |
+
|
467 |
+
return pipe
|
468 |
+
|
469 |
+
|
470 |
+
if __name__ == "__main__":
|
471 |
+
parser = argparse.ArgumentParser()
|
472 |
+
|
473 |
+
parser.add_argument(
|
474 |
+
"--checkpoint_path",
|
475 |
+
default=None,
|
476 |
+
type=str,
|
477 |
+
required=True,
|
478 |
+
help="Path to the checkpoint to convert.",
|
479 |
+
)
|
480 |
+
parser.add_argument(
|
481 |
+
"--original_config_file",
|
482 |
+
default=None,
|
483 |
+
type=str,
|
484 |
+
help="The YAML config file corresponding to the original architecture.",
|
485 |
+
)
|
486 |
+
parser.add_argument(
|
487 |
+
"--to_safetensors",
|
488 |
+
action="store_true",
|
489 |
+
help="Whether to store pipeline in safetensors format or not.",
|
490 |
+
)
|
491 |
+
parser.add_argument(
|
492 |
+
"--half", action="store_true", help="Save weights in half precision."
|
493 |
+
)
|
494 |
+
parser.add_argument(
|
495 |
+
"--test",
|
496 |
+
action="store_true",
|
497 |
+
help="Whether to test inference after convertion.",
|
498 |
+
)
|
499 |
+
parser.add_argument(
|
500 |
+
"--dump_path",
|
501 |
+
default=None,
|
502 |
+
type=str,
|
503 |
+
required=True,
|
504 |
+
help="Path to the output model.",
|
505 |
+
)
|
506 |
+
parser.add_argument(
|
507 |
+
"--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)"
|
508 |
+
)
|
509 |
+
args = parser.parse_args()
|
510 |
+
|
511 |
+
args.device = torch.device(
|
512 |
+
args.device
|
513 |
+
if args.device is not None
|
514 |
+
else "cuda"
|
515 |
+
if torch.cuda.is_available()
|
516 |
+
else "cpu"
|
517 |
+
)
|
518 |
+
|
519 |
+
pipe = convert_from_original_imagedream_ckpt(
|
520 |
+
checkpoint_path=args.checkpoint_path,
|
521 |
+
original_config_file=args.original_config_file,
|
522 |
+
device=args.device,
|
523 |
+
)
|
524 |
+
|
525 |
+
if args.half:
|
526 |
+
pipe.to(torch_dtype=torch.float16)
|
527 |
+
|
528 |
+
print(f"Saving pipeline to {args.dump_path}...")
|
529 |
+
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
|
530 |
+
|
531 |
+
# TODO: input image...
|
532 |
+
if args.test:
|
533 |
+
try:
|
534 |
+
print(f"Testing each subcomponent of the pipeline...")
|
535 |
+
images = pipe(
|
536 |
+
prompt="Head of Hatsune Miku",
|
537 |
+
negative_prompt="painting, bad quality, flat",
|
538 |
+
output_type="pil",
|
539 |
+
guidance_scale=7.5,
|
540 |
+
num_inference_steps=50,
|
541 |
+
device=args.device,
|
542 |
+
)
|
543 |
+
for i, image in enumerate(images):
|
544 |
+
image.save(f"image_{i}.png") # type: ignore
|
545 |
+
|
546 |
+
print(f"Testing entire pipeline...")
|
547 |
+
loaded_pipe = ImageDreamPipeline.from_pretrained(args.dump_path, safe_serialization=args.to_safetensors) # type: ignore
|
548 |
+
images = loaded_pipe(
|
549 |
+
prompt="Head of Hatsune Miku",
|
550 |
+
negative_prompt="painting, bad quality, flat",
|
551 |
+
output_type="pil",
|
552 |
+
guidance_scale=7.5,
|
553 |
+
num_inference_steps=50,
|
554 |
+
device=args.device,
|
555 |
+
)
|
556 |
+
for i, image in enumerate(images):
|
557 |
+
image.save(f"image_{i}.png") # type: ignore
|
558 |
+
except Exception as e:
|
559 |
+
print(f"Failed to test inference: {e}")
|
560 |
+
raise e from e
|
561 |
+
print("Inference test passed!")
|
imagedream/adaptor.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
# FFN
|
6 |
+
def FeedForward(dim, mult=4):
|
7 |
+
inner_dim = int(dim * mult)
|
8 |
+
return nn.Sequential(
|
9 |
+
nn.LayerNorm(dim),
|
10 |
+
nn.Linear(dim, inner_dim, bias=False),
|
11 |
+
nn.GELU(),
|
12 |
+
nn.Linear(inner_dim, dim, bias=False),
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
def reshape_tensor(x, heads):
|
17 |
+
bs, length, width = x.shape
|
18 |
+
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
19 |
+
x = x.view(bs, length, heads, -1)
|
20 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
21 |
+
x = x.transpose(1, 2)
|
22 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
23 |
+
x = x.reshape(bs, heads, length, -1)
|
24 |
+
return x
|
25 |
+
|
26 |
+
|
27 |
+
class PerceiverAttention(nn.Module):
|
28 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
29 |
+
super().__init__()
|
30 |
+
self.scale = dim_head ** -0.5
|
31 |
+
self.dim_head = dim_head
|
32 |
+
self.heads = heads
|
33 |
+
inner_dim = dim_head * heads
|
34 |
+
|
35 |
+
self.norm1 = nn.LayerNorm(dim)
|
36 |
+
self.norm2 = nn.LayerNorm(dim)
|
37 |
+
|
38 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
39 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
40 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
41 |
+
|
42 |
+
def forward(self, x, latents):
|
43 |
+
"""
|
44 |
+
Args:
|
45 |
+
x (torch.Tensor): image features
|
46 |
+
shape (b, n1, D)
|
47 |
+
latent (torch.Tensor): latent features
|
48 |
+
shape (b, n2, D)
|
49 |
+
"""
|
50 |
+
x = self.norm1(x)
|
51 |
+
latents = self.norm2(latents)
|
52 |
+
|
53 |
+
b, l, _ = latents.shape
|
54 |
+
|
55 |
+
q = self.to_q(latents)
|
56 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
57 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
58 |
+
|
59 |
+
q = reshape_tensor(q, self.heads)
|
60 |
+
k = reshape_tensor(k, self.heads)
|
61 |
+
v = reshape_tensor(v, self.heads)
|
62 |
+
|
63 |
+
# attention
|
64 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
65 |
+
weight = (q * scale) @ (k * scale).transpose(
|
66 |
+
-2, -1
|
67 |
+
) # More stable with f16 than dividing afterwards
|
68 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
69 |
+
out = weight @ v
|
70 |
+
|
71 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
72 |
+
|
73 |
+
return self.to_out(out)
|
74 |
+
|
75 |
+
|
76 |
+
class ImageProjModel(torch.nn.Module):
|
77 |
+
"""Projection Model"""
|
78 |
+
|
79 |
+
def __init__(
|
80 |
+
self,
|
81 |
+
cross_attention_dim=1024,
|
82 |
+
clip_embeddings_dim=1024,
|
83 |
+
clip_extra_context_tokens=4,
|
84 |
+
):
|
85 |
+
super().__init__()
|
86 |
+
self.cross_attention_dim = cross_attention_dim
|
87 |
+
self.clip_extra_context_tokens = clip_extra_context_tokens
|
88 |
+
|
89 |
+
# from 1024 -> 4 * 1024
|
90 |
+
self.proj = torch.nn.Linear(
|
91 |
+
clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim
|
92 |
+
)
|
93 |
+
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
94 |
+
|
95 |
+
def forward(self, image_embeds):
|
96 |
+
embeds = image_embeds
|
97 |
+
clip_extra_context_tokens = self.proj(embeds).reshape(
|
98 |
+
-1, self.clip_extra_context_tokens, self.cross_attention_dim
|
99 |
+
)
|
100 |
+
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
101 |
+
return clip_extra_context_tokens
|
102 |
+
|
103 |
+
|
104 |
+
class Resampler(nn.Module):
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
dim=1024,
|
108 |
+
depth=8,
|
109 |
+
dim_head=64,
|
110 |
+
heads=16,
|
111 |
+
num_queries=8,
|
112 |
+
embedding_dim=768,
|
113 |
+
output_dim=1024,
|
114 |
+
ff_mult=4,
|
115 |
+
):
|
116 |
+
super().__init__()
|
117 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)
|
118 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
119 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
120 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
121 |
+
|
122 |
+
self.layers = nn.ModuleList([])
|
123 |
+
for _ in range(depth):
|
124 |
+
self.layers.append(
|
125 |
+
nn.ModuleList(
|
126 |
+
[
|
127 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
128 |
+
FeedForward(dim=dim, mult=ff_mult),
|
129 |
+
]
|
130 |
+
)
|
131 |
+
)
|
132 |
+
|
133 |
+
def forward(self, x):
|
134 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
135 |
+
x = self.proj_in(x)
|
136 |
+
for attn, ff in self.layers:
|
137 |
+
latents = attn(x, latents) + latents
|
138 |
+
latents = ff(latents) + latents
|
139 |
+
|
140 |
+
latents = self.proj_out(latents)
|
141 |
+
return self.norm_out(latents)
|
imagedream/attention.py
CHANGED
@@ -1,26 +1,16 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
import torch.nn.functional as F
|
4 |
-
from torch.amp.autocast_mode import autocast
|
5 |
|
6 |
from inspect import isfunction
|
7 |
from einops import rearrange, repeat
|
8 |
from typing import Optional, Any
|
9 |
-
from .util import checkpoint, zero_module
|
10 |
-
|
11 |
-
try:
|
12 |
-
import xformers # type: ignore
|
13 |
-
import xformers.ops # type: ignore
|
14 |
-
XFORMERS_IS_AVAILBLE = True
|
15 |
-
except:
|
16 |
-
print(f'[WARN] xformers is unavailable!')
|
17 |
-
XFORMERS_IS_AVAILBLE = False
|
18 |
|
19 |
-
#
|
20 |
-
import
|
21 |
-
|
22 |
-
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
|
23 |
|
|
|
24 |
|
25 |
def default(val, d):
|
26 |
if val is not None:
|
@@ -57,68 +47,35 @@ class FeedForward(nn.Module):
|
|
57 |
return self.net(x)
|
58 |
|
59 |
|
60 |
-
class CrossAttention(nn.Module):
|
61 |
-
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
62 |
-
super().__init__()
|
63 |
-
inner_dim = dim_head * heads
|
64 |
-
context_dim = default(context_dim, query_dim)
|
65 |
-
|
66 |
-
self.scale = dim_head**-0.5
|
67 |
-
self.heads = heads
|
68 |
-
|
69 |
-
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
70 |
-
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
71 |
-
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
72 |
-
|
73 |
-
self.to_out = nn.Sequential(
|
74 |
-
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
75 |
-
)
|
76 |
-
|
77 |
-
def forward(self, x, context=None, mask=None):
|
78 |
-
h = self.heads
|
79 |
-
|
80 |
-
q = self.to_q(x)
|
81 |
-
context = default(context, x)
|
82 |
-
k = self.to_k(context)
|
83 |
-
v = self.to_v(context)
|
84 |
-
|
85 |
-
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
|
86 |
-
|
87 |
-
# force cast to fp32 to avoid overflowing
|
88 |
-
if _ATTN_PRECISION == "fp32":
|
89 |
-
with autocast(enabled=False, device_type="cuda"):
|
90 |
-
q, k = q.float(), k.float()
|
91 |
-
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
|
92 |
-
else:
|
93 |
-
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
|
94 |
-
|
95 |
-
del q, k
|
96 |
-
|
97 |
-
if mask is not None:
|
98 |
-
mask = rearrange(mask, "b ... -> b (...)")
|
99 |
-
max_neg_value = -torch.finfo(sim.dtype).max
|
100 |
-
mask = repeat(mask, "b j -> (b h) () j", h=h)
|
101 |
-
sim.masked_fill_(~mask, max_neg_value)
|
102 |
-
|
103 |
-
# attention, what we cannot get enough of
|
104 |
-
sim = sim.softmax(dim=-1)
|
105 |
-
|
106 |
-
out = torch.einsum("b i j, b j d -> b i d", sim, v)
|
107 |
-
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
|
108 |
-
return self.to_out(out)
|
109 |
-
|
110 |
-
|
111 |
class MemoryEfficientCrossAttention(nn.Module):
|
112 |
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
113 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
super().__init__()
|
115 |
-
|
116 |
inner_dim = dim_head * heads
|
117 |
context_dim = default(context_dim, query_dim)
|
118 |
|
119 |
self.heads = heads
|
120 |
self.dim_head = dim_head
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
123 |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
124 |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
@@ -128,9 +85,18 @@ class MemoryEfficientCrossAttention(nn.Module):
|
|
128 |
)
|
129 |
self.attention_op: Optional[Any] = None
|
130 |
|
131 |
-
def forward(self, x, context=None
|
132 |
q = self.to_q(x)
|
133 |
context = default(context, x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
k = self.to_k(context)
|
135 |
v = self.to_v(context)
|
136 |
|
@@ -149,8 +115,21 @@ class MemoryEfficientCrossAttention(nn.Module):
|
|
149 |
q, k, v, attn_bias=None, op=self.attention_op
|
150 |
)
|
151 |
|
152 |
-
if
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
out = (
|
155 |
out.unsqueeze(0)
|
156 |
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
@@ -160,148 +139,47 @@ class MemoryEfficientCrossAttention(nn.Module):
|
|
160 |
return self.to_out(out)
|
161 |
|
162 |
|
163 |
-
class
|
164 |
-
|
165 |
-
"softmax": CrossAttention,
|
166 |
-
"softmax-xformers": MemoryEfficientCrossAttention,
|
167 |
-
} # vanilla attention
|
168 |
-
|
169 |
def __init__(
|
170 |
self,
|
171 |
dim,
|
|
|
172 |
n_heads,
|
173 |
d_head,
|
174 |
dropout=0.0,
|
175 |
-
context_dim=None,
|
176 |
gated_ff=True,
|
177 |
checkpoint=True,
|
178 |
-
|
|
|
|
|
179 |
):
|
180 |
super().__init__()
|
181 |
-
|
182 |
-
|
183 |
-
attn_cls = self.ATTENTION_MODES[attn_mode]
|
184 |
-
self.disable_self_attn = disable_self_attn
|
185 |
-
self.attn1 = attn_cls(
|
186 |
query_dim=dim,
|
|
|
187 |
heads=n_heads,
|
188 |
dim_head=d_head,
|
189 |
dropout=dropout,
|
190 |
-
|
191 |
-
) # is a self-attention if not self.disable_self_attn
|
192 |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
193 |
-
self.attn2 =
|
194 |
query_dim=dim,
|
195 |
context_dim=context_dim,
|
196 |
heads=n_heads,
|
197 |
dim_head=d_head,
|
198 |
dropout=dropout,
|
199 |
-
|
|
|
|
|
|
|
|
|
200 |
self.norm1 = nn.LayerNorm(dim)
|
201 |
self.norm2 = nn.LayerNorm(dim)
|
202 |
self.norm3 = nn.LayerNorm(dim)
|
203 |
self.checkpoint = checkpoint
|
204 |
|
205 |
-
def forward(self, x, context=None):
|
206 |
-
return checkpoint(
|
207 |
-
self._forward, (x, context), self.parameters(), self.checkpoint
|
208 |
-
)
|
209 |
-
|
210 |
-
def _forward(self, x, context=None):
|
211 |
-
x = (
|
212 |
-
self.attn1(
|
213 |
-
self.norm1(x), context=context if self.disable_self_attn else None
|
214 |
-
)
|
215 |
-
+ x
|
216 |
-
)
|
217 |
-
x = self.attn2(self.norm2(x), context=context) + x
|
218 |
-
x = self.ff(self.norm3(x)) + x
|
219 |
-
return x
|
220 |
-
|
221 |
-
|
222 |
-
class SpatialTransformer(nn.Module):
|
223 |
-
"""
|
224 |
-
Transformer block for image-like data.
|
225 |
-
First, project the input (aka embedding)
|
226 |
-
and reshape to b, t, d.
|
227 |
-
Then apply standard transformer action.
|
228 |
-
Finally, reshape to image
|
229 |
-
NEW: use_linear for more efficiency instead of the 1x1 convs
|
230 |
-
"""
|
231 |
-
|
232 |
-
def __init__(
|
233 |
-
self,
|
234 |
-
in_channels,
|
235 |
-
n_heads,
|
236 |
-
d_head,
|
237 |
-
depth=1,
|
238 |
-
dropout=0.0,
|
239 |
-
context_dim=None,
|
240 |
-
disable_self_attn=False,
|
241 |
-
use_linear=False,
|
242 |
-
use_checkpoint=True,
|
243 |
-
):
|
244 |
-
super().__init__()
|
245 |
-
assert context_dim is not None
|
246 |
-
if not isinstance(context_dim, list):
|
247 |
-
context_dim = [context_dim]
|
248 |
-
self.in_channels = in_channels
|
249 |
-
inner_dim = n_heads * d_head
|
250 |
-
self.norm = nn.GroupNorm(
|
251 |
-
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
252 |
-
)
|
253 |
-
if not use_linear:
|
254 |
-
self.proj_in = nn.Conv2d(
|
255 |
-
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
256 |
-
)
|
257 |
-
else:
|
258 |
-
self.proj_in = nn.Linear(in_channels, inner_dim)
|
259 |
-
|
260 |
-
self.transformer_blocks = nn.ModuleList(
|
261 |
-
[
|
262 |
-
BasicTransformerBlock(
|
263 |
-
inner_dim,
|
264 |
-
n_heads,
|
265 |
-
d_head,
|
266 |
-
dropout=dropout,
|
267 |
-
context_dim=context_dim[d],
|
268 |
-
disable_self_attn=disable_self_attn,
|
269 |
-
checkpoint=use_checkpoint,
|
270 |
-
)
|
271 |
-
for d in range(depth)
|
272 |
-
]
|
273 |
-
)
|
274 |
-
if not use_linear:
|
275 |
-
self.proj_out = zero_module(
|
276 |
-
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
277 |
-
)
|
278 |
-
else:
|
279 |
-
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
280 |
-
self.use_linear = use_linear
|
281 |
-
|
282 |
-
def forward(self, x, context=None):
|
283 |
-
# note: if no context is given, cross-attention defaults to self-attention
|
284 |
-
if not isinstance(context, list):
|
285 |
-
context = [context]
|
286 |
-
b, c, h, w = x.shape
|
287 |
-
x_in = x
|
288 |
-
x = self.norm(x)
|
289 |
-
if not self.use_linear:
|
290 |
-
x = self.proj_in(x)
|
291 |
-
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
292 |
-
if self.use_linear:
|
293 |
-
x = self.proj_in(x)
|
294 |
-
for i, block in enumerate(self.transformer_blocks):
|
295 |
-
x = block(x, context=context[i])
|
296 |
-
if self.use_linear:
|
297 |
-
x = self.proj_out(x)
|
298 |
-
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
299 |
-
if not self.use_linear:
|
300 |
-
x = self.proj_out(x)
|
301 |
-
return x + x_in
|
302 |
-
|
303 |
-
|
304 |
-
class BasicTransformerBlock3D(BasicTransformerBlock):
|
305 |
def forward(self, x, context=None, num_frames=1):
|
306 |
return checkpoint(
|
307 |
self._forward, (x, context, num_frames), self.parameters(), self.checkpoint
|
@@ -309,12 +187,7 @@ class BasicTransformerBlock3D(BasicTransformerBlock):
|
|
309 |
|
310 |
def _forward(self, x, context=None, num_frames=1):
|
311 |
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
|
312 |
-
x = (
|
313 |
-
self.attn1(
|
314 |
-
self.norm1(x), context=context if self.disable_self_attn else None
|
315 |
-
)
|
316 |
-
+ x
|
317 |
-
)
|
318 |
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
|
319 |
x = self.attn2(self.norm2(x), context=context) + x
|
320 |
x = self.ff(self.norm3(x)) + x
|
@@ -322,35 +195,32 @@ class BasicTransformerBlock3D(BasicTransformerBlock):
|
|
322 |
|
323 |
|
324 |
class SpatialTransformer3D(nn.Module):
|
325 |
-
"""3D self-attention"""
|
326 |
|
327 |
def __init__(
|
328 |
self,
|
329 |
in_channels,
|
330 |
n_heads,
|
331 |
d_head,
|
|
|
332 |
depth=1,
|
333 |
dropout=0.0,
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
use_checkpoint=True,
|
338 |
):
|
339 |
super().__init__()
|
340 |
-
|
341 |
if not isinstance(context_dim, list):
|
342 |
context_dim = [context_dim]
|
|
|
343 |
self.in_channels = in_channels
|
|
|
344 |
inner_dim = n_heads * d_head
|
345 |
self.norm = nn.GroupNorm(
|
346 |
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
347 |
)
|
348 |
-
|
349 |
-
self.proj_in = nn.Conv2d(
|
350 |
-
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
351 |
-
)
|
352 |
-
else:
|
353 |
-
self.proj_in = nn.Linear(in_channels, inner_dim)
|
354 |
|
355 |
self.transformer_blocks = nn.ModuleList(
|
356 |
[
|
@@ -358,21 +228,19 @@ class SpatialTransformer3D(nn.Module):
|
|
358 |
inner_dim,
|
359 |
n_heads,
|
360 |
d_head,
|
361 |
-
dropout=dropout,
|
362 |
context_dim=context_dim[d],
|
363 |
-
|
364 |
checkpoint=use_checkpoint,
|
|
|
|
|
|
|
365 |
)
|
366 |
for d in range(depth)
|
367 |
]
|
368 |
)
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
)
|
373 |
-
else:
|
374 |
-
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
375 |
-
self.use_linear = use_linear
|
376 |
|
377 |
def forward(self, x, context=None, num_frames=1):
|
378 |
# note: if no context is given, cross-attention defaults to self-attention
|
@@ -381,16 +249,11 @@ class SpatialTransformer3D(nn.Module):
|
|
381 |
b, c, h, w = x.shape
|
382 |
x_in = x
|
383 |
x = self.norm(x)
|
384 |
-
if not self.use_linear:
|
385 |
-
x = self.proj_in(x)
|
386 |
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
387 |
-
|
388 |
-
x = self.proj_in(x)
|
389 |
for i, block in enumerate(self.transformer_blocks):
|
390 |
x = block(x, context=context[i], num_frames=num_frames)
|
391 |
-
|
392 |
-
x = self.proj_out(x)
|
393 |
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
394 |
-
|
395 |
-
x = self.proj_out(x)
|
396 |
return x + x_in
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
import torch.nn.functional as F
|
|
|
4 |
|
5 |
from inspect import isfunction
|
6 |
from einops import rearrange, repeat
|
7 |
from typing import Optional, Any
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# require xformers
|
10 |
+
import xformers # type: ignore
|
11 |
+
import xformers.ops # type: ignore
|
|
|
12 |
|
13 |
+
from .util import checkpoint, zero_module
|
14 |
|
15 |
def default(val, d):
|
16 |
if val is not None:
|
|
|
47 |
return self.net(x)
|
48 |
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
class MemoryEfficientCrossAttention(nn.Module):
|
51 |
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
query_dim,
|
55 |
+
context_dim=None,
|
56 |
+
heads=8,
|
57 |
+
dim_head=64,
|
58 |
+
dropout=0.0,
|
59 |
+
with_ip=False,
|
60 |
+
ip_dim=16,
|
61 |
+
ip_weight=1,
|
62 |
+
):
|
63 |
super().__init__()
|
64 |
+
|
65 |
inner_dim = dim_head * heads
|
66 |
context_dim = default(context_dim, query_dim)
|
67 |
|
68 |
self.heads = heads
|
69 |
self.dim_head = dim_head
|
70 |
|
71 |
+
self.with_ip = with_ip and (context_dim is not None)
|
72 |
+
self.ip_dim = ip_dim
|
73 |
+
self.ip_weight = ip_weight
|
74 |
+
|
75 |
+
if self.with_ip:
|
76 |
+
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
77 |
+
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
78 |
+
|
79 |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
80 |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
81 |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
|
|
85 |
)
|
86 |
self.attention_op: Optional[Any] = None
|
87 |
|
88 |
+
def forward(self, x, context=None):
|
89 |
q = self.to_q(x)
|
90 |
context = default(context, x)
|
91 |
+
|
92 |
+
if self.with_ip:
|
93 |
+
# context dim [(b frame_num), (77 + img_token), 1024]
|
94 |
+
token_len = context.shape[1]
|
95 |
+
context_ip = context[:, -self.ip_dim :, :]
|
96 |
+
k_ip = self.to_k_ip(context_ip)
|
97 |
+
v_ip = self.to_v_ip(context_ip)
|
98 |
+
context = context[:, : (token_len - self.ip_dim), :]
|
99 |
+
|
100 |
k = self.to_k(context)
|
101 |
v = self.to_v(context)
|
102 |
|
|
|
115 |
q, k, v, attn_bias=None, op=self.attention_op
|
116 |
)
|
117 |
|
118 |
+
if self.with_ip:
|
119 |
+
k_ip, v_ip = map(
|
120 |
+
lambda t: t.unsqueeze(3)
|
121 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
122 |
+
.permute(0, 2, 1, 3)
|
123 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
124 |
+
.contiguous(),
|
125 |
+
(k_ip, v_ip),
|
126 |
+
)
|
127 |
+
# actually compute the attention, what we cannot get enough of
|
128 |
+
out_ip = xformers.ops.memory_efficient_attention(
|
129 |
+
q, k_ip, v_ip, attn_bias=None, op=self.attention_op
|
130 |
+
)
|
131 |
+
out = out + self.ip_weight * out_ip
|
132 |
+
|
133 |
out = (
|
134 |
out.unsqueeze(0)
|
135 |
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
|
|
139 |
return self.to_out(out)
|
140 |
|
141 |
|
142 |
+
class BasicTransformerBlock3D(nn.Module):
|
143 |
+
|
|
|
|
|
|
|
|
|
144 |
def __init__(
|
145 |
self,
|
146 |
dim,
|
147 |
+
context_dim,
|
148 |
n_heads,
|
149 |
d_head,
|
150 |
dropout=0.0,
|
|
|
151 |
gated_ff=True,
|
152 |
checkpoint=True,
|
153 |
+
with_ip=False,
|
154 |
+
ip_dim=16,
|
155 |
+
ip_weight=1,
|
156 |
):
|
157 |
super().__init__()
|
158 |
+
|
159 |
+
self.attn1 = MemoryEfficientCrossAttention(
|
|
|
|
|
|
|
160 |
query_dim=dim,
|
161 |
+
context_dim=None, # self-attention
|
162 |
heads=n_heads,
|
163 |
dim_head=d_head,
|
164 |
dropout=dropout,
|
165 |
+
)
|
|
|
166 |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
167 |
+
self.attn2 = MemoryEfficientCrossAttention(
|
168 |
query_dim=dim,
|
169 |
context_dim=context_dim,
|
170 |
heads=n_heads,
|
171 |
dim_head=d_head,
|
172 |
dropout=dropout,
|
173 |
+
# ip only applies to cross-attention
|
174 |
+
with_ip=with_ip,
|
175 |
+
ip_dim=ip_dim,
|
176 |
+
ip_weight=ip_weight,
|
177 |
+
)
|
178 |
self.norm1 = nn.LayerNorm(dim)
|
179 |
self.norm2 = nn.LayerNorm(dim)
|
180 |
self.norm3 = nn.LayerNorm(dim)
|
181 |
self.checkpoint = checkpoint
|
182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
def forward(self, x, context=None, num_frames=1):
|
184 |
return checkpoint(
|
185 |
self._forward, (x, context, num_frames), self.parameters(), self.checkpoint
|
|
|
187 |
|
188 |
def _forward(self, x, context=None, num_frames=1):
|
189 |
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
|
190 |
+
x = self.attn1(self.norm1(x), context=None) + x
|
|
|
|
|
|
|
|
|
|
|
191 |
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
|
192 |
x = self.attn2(self.norm2(x), context=context) + x
|
193 |
x = self.ff(self.norm3(x)) + x
|
|
|
195 |
|
196 |
|
197 |
class SpatialTransformer3D(nn.Module):
|
|
|
198 |
|
199 |
def __init__(
|
200 |
self,
|
201 |
in_channels,
|
202 |
n_heads,
|
203 |
d_head,
|
204 |
+
context_dim, # cross attention input dim
|
205 |
depth=1,
|
206 |
dropout=0.0,
|
207 |
+
with_ip=False,
|
208 |
+
ip_dim=16,
|
209 |
+
ip_weight=1,
|
210 |
use_checkpoint=True,
|
211 |
):
|
212 |
super().__init__()
|
213 |
+
|
214 |
if not isinstance(context_dim, list):
|
215 |
context_dim = [context_dim]
|
216 |
+
|
217 |
self.in_channels = in_channels
|
218 |
+
|
219 |
inner_dim = n_heads * d_head
|
220 |
self.norm = nn.GroupNorm(
|
221 |
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
222 |
)
|
223 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
self.transformer_blocks = nn.ModuleList(
|
226 |
[
|
|
|
228 |
inner_dim,
|
229 |
n_heads,
|
230 |
d_head,
|
|
|
231 |
context_dim=context_dim[d],
|
232 |
+
dropout=dropout,
|
233 |
checkpoint=use_checkpoint,
|
234 |
+
with_ip=with_ip,
|
235 |
+
ip_dim=ip_dim,
|
236 |
+
ip_weight=ip_weight,
|
237 |
)
|
238 |
for d in range(depth)
|
239 |
]
|
240 |
)
|
241 |
+
|
242 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
243 |
+
|
|
|
|
|
|
|
|
|
244 |
|
245 |
def forward(self, x, context=None, num_frames=1):
|
246 |
# note: if no context is given, cross-attention defaults to self-attention
|
|
|
249 |
b, c, h, w = x.shape
|
250 |
x_in = x
|
251 |
x = self.norm(x)
|
|
|
|
|
252 |
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
253 |
+
x = self.proj_in(x)
|
|
|
254 |
for i, block in enumerate(self.transformer_blocks):
|
255 |
x = block(x, context=context[i], num_frames=num_frames)
|
256 |
+
x = self.proj_out(x)
|
|
|
257 |
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
258 |
+
|
|
|
259 |
return x + x_in
|
imagedream/models.py
CHANGED
@@ -13,8 +13,8 @@ from .util import (
|
|
13 |
zero_module,
|
14 |
timestep_embedding,
|
15 |
)
|
16 |
-
from .attention import
|
17 |
-
|
18 |
|
19 |
class CondSequential(nn.Sequential):
|
20 |
"""
|
@@ -28,8 +28,6 @@ class CondSequential(nn.Sequential):
|
|
28 |
x = layer(x, emb)
|
29 |
elif isinstance(layer, SpatialTransformer3D):
|
30 |
x = layer(x, context, num_frames=num_frames)
|
31 |
-
elif isinstance(layer, SpatialTransformer):
|
32 |
-
x = layer(x, context)
|
33 |
else:
|
34 |
x = layer(x)
|
35 |
return x
|
@@ -274,6 +272,9 @@ class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
|
274 |
disable_middle_self_attn=False,
|
275 |
adm_in_channels=None,
|
276 |
camera_dim=None,
|
|
|
|
|
|
|
277 |
**kwargs,
|
278 |
):
|
279 |
super().__init__()
|
@@ -305,9 +306,7 @@ class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
|
305 |
"as a list/tuple (per-level) with the same length as channel_mult"
|
306 |
)
|
307 |
self.num_res_blocks = num_res_blocks
|
308 |
-
|
309 |
-
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
310 |
-
assert len(disable_self_attentions) == len(channel_mult)
|
311 |
if num_attention_blocks is not None:
|
312 |
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
313 |
assert all(
|
@@ -334,6 +333,22 @@ class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
|
334 |
self.num_heads_upsample = num_heads_upsample
|
335 |
self.predict_codebook_ids = n_embed is not None
|
336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
time_embed_dim = model_channels * 4
|
338 |
self.time_embed = nn.Sequential(
|
339 |
nn.Linear(model_channels, time_embed_dim),
|
@@ -398,11 +413,6 @@ class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
|
398 |
else:
|
399 |
num_heads = ch // num_head_channels
|
400 |
dim_head = num_head_channels
|
401 |
-
|
402 |
-
if disable_self_attentions is not None:
|
403 |
-
disabled_sa = disable_self_attentions[level]
|
404 |
-
else:
|
405 |
-
disabled_sa = False
|
406 |
|
407 |
if num_attention_blocks is None or nr < num_attention_blocks[level]:
|
408 |
layers.append(
|
@@ -410,10 +420,12 @@ class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
|
410 |
ch,
|
411 |
num_heads,
|
412 |
dim_head,
|
413 |
-
depth=transformer_depth,
|
414 |
context_dim=context_dim,
|
415 |
-
|
416 |
use_checkpoint=use_checkpoint,
|
|
|
|
|
|
|
417 |
)
|
418 |
)
|
419 |
self.input_blocks.append(CondSequential(*layers))
|
@@ -463,10 +475,12 @@ class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
|
463 |
ch,
|
464 |
num_heads,
|
465 |
dim_head,
|
466 |
-
depth=transformer_depth,
|
467 |
context_dim=context_dim,
|
468 |
-
|
469 |
use_checkpoint=use_checkpoint,
|
|
|
|
|
|
|
470 |
),
|
471 |
ResBlock(
|
472 |
ch,
|
@@ -501,11 +515,6 @@ class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
|
501 |
else:
|
502 |
num_heads = ch // num_head_channels
|
503 |
dim_head = num_head_channels
|
504 |
-
|
505 |
-
if disable_self_attentions is not None:
|
506 |
-
disabled_sa = disable_self_attentions[level]
|
507 |
-
else:
|
508 |
-
disabled_sa = False
|
509 |
|
510 |
if num_attention_blocks is None or i < num_attention_blocks[level]:
|
511 |
layers.append(
|
@@ -513,10 +522,12 @@ class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
|
513 |
ch,
|
514 |
num_heads,
|
515 |
dim_head,
|
516 |
-
depth=transformer_depth,
|
517 |
context_dim=context_dim,
|
518 |
-
|
519 |
use_checkpoint=use_checkpoint,
|
|
|
|
|
|
|
520 |
)
|
521 |
)
|
522 |
if level and i == self.num_res_blocks[level]:
|
@@ -559,6 +570,9 @@ class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
|
559 |
y: Optional[Tensor] = None,
|
560 |
camera=None,
|
561 |
num_frames=1,
|
|
|
|
|
|
|
562 |
**kwargs,
|
563 |
):
|
564 |
"""
|
@@ -592,6 +606,11 @@ class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
|
592 |
if camera is not None:
|
593 |
assert camera.shape[0] == emb.shape[0]
|
594 |
emb = emb + self.camera_embed(camera)
|
|
|
|
|
|
|
|
|
|
|
595 |
|
596 |
h = x
|
597 |
for module in self.input_blocks:
|
|
|
13 |
zero_module,
|
14 |
timestep_embedding,
|
15 |
)
|
16 |
+
from .attention import SpatialTransformer3D
|
17 |
+
from .adaptor import Resampler, ImageProjModel
|
18 |
|
19 |
class CondSequential(nn.Sequential):
|
20 |
"""
|
|
|
28 |
x = layer(x, emb)
|
29 |
elif isinstance(layer, SpatialTransformer3D):
|
30 |
x = layer(x, context, num_frames=num_frames)
|
|
|
|
|
31 |
else:
|
32 |
x = layer(x)
|
33 |
return x
|
|
|
272 |
disable_middle_self_attn=False,
|
273 |
adm_in_channels=None,
|
274 |
camera_dim=None,
|
275 |
+
with_ip=True,
|
276 |
+
ip_dim=16,
|
277 |
+
ip_weight=1.0,
|
278 |
**kwargs,
|
279 |
):
|
280 |
super().__init__()
|
|
|
306 |
"as a list/tuple (per-level) with the same length as channel_mult"
|
307 |
)
|
308 |
self.num_res_blocks = num_res_blocks
|
309 |
+
|
|
|
|
|
310 |
if num_attention_blocks is not None:
|
311 |
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
312 |
assert all(
|
|
|
333 |
self.num_heads_upsample = num_heads_upsample
|
334 |
self.predict_codebook_ids = n_embed is not None
|
335 |
|
336 |
+
self.with_ip = with_ip
|
337 |
+
self.ip_dim = ip_dim
|
338 |
+
self.ip_weight = ip_weight
|
339 |
+
|
340 |
+
if self.with_ip and self.ip_dim > 0:
|
341 |
+
self.image_embed = Resampler(
|
342 |
+
dim=context_dim,
|
343 |
+
depth=4,
|
344 |
+
dim_head=64,
|
345 |
+
heads=12,
|
346 |
+
num_queries=ip_dim, # num token
|
347 |
+
embedding_dim=1280,
|
348 |
+
output_dim=context_dim,
|
349 |
+
ff_mult=4,
|
350 |
+
)
|
351 |
+
|
352 |
time_embed_dim = model_channels * 4
|
353 |
self.time_embed = nn.Sequential(
|
354 |
nn.Linear(model_channels, time_embed_dim),
|
|
|
413 |
else:
|
414 |
num_heads = ch // num_head_channels
|
415 |
dim_head = num_head_channels
|
|
|
|
|
|
|
|
|
|
|
416 |
|
417 |
if num_attention_blocks is None or nr < num_attention_blocks[level]:
|
418 |
layers.append(
|
|
|
420 |
ch,
|
421 |
num_heads,
|
422 |
dim_head,
|
|
|
423 |
context_dim=context_dim,
|
424 |
+
depth=transformer_depth,
|
425 |
use_checkpoint=use_checkpoint,
|
426 |
+
with_ip=self.with_ip,
|
427 |
+
ip_dim=self.ip_dim,
|
428 |
+
ip_weight=self.ip_weight,
|
429 |
)
|
430 |
)
|
431 |
self.input_blocks.append(CondSequential(*layers))
|
|
|
475 |
ch,
|
476 |
num_heads,
|
477 |
dim_head,
|
|
|
478 |
context_dim=context_dim,
|
479 |
+
depth=transformer_depth,
|
480 |
use_checkpoint=use_checkpoint,
|
481 |
+
with_ip=self.with_ip,
|
482 |
+
ip_dim=self.ip_dim,
|
483 |
+
ip_weight=self.ip_weight,
|
484 |
),
|
485 |
ResBlock(
|
486 |
ch,
|
|
|
515 |
else:
|
516 |
num_heads = ch // num_head_channels
|
517 |
dim_head = num_head_channels
|
|
|
|
|
|
|
|
|
|
|
518 |
|
519 |
if num_attention_blocks is None or i < num_attention_blocks[level]:
|
520 |
layers.append(
|
|
|
522 |
ch,
|
523 |
num_heads,
|
524 |
dim_head,
|
|
|
525 |
context_dim=context_dim,
|
526 |
+
depth=transformer_depth,
|
527 |
use_checkpoint=use_checkpoint,
|
528 |
+
with_ip=self.with_ip,
|
529 |
+
ip_dim=self.ip_dim,
|
530 |
+
ip_weight=self.ip_weight,
|
531 |
)
|
532 |
)
|
533 |
if level and i == self.num_res_blocks[level]:
|
|
|
570 |
y: Optional[Tensor] = None,
|
571 |
camera=None,
|
572 |
num_frames=1,
|
573 |
+
# should be provided if with_ip
|
574 |
+
ip = None,
|
575 |
+
ip_img = None,
|
576 |
**kwargs,
|
577 |
):
|
578 |
"""
|
|
|
606 |
if camera is not None:
|
607 |
assert camera.shape[0] == emb.shape[0]
|
608 |
emb = emb + self.camera_embed(camera)
|
609 |
+
|
610 |
+
if self.with_ip:
|
611 |
+
x[(num_frames - 1) :: num_frames, :, :, :] = ip_img
|
612 |
+
ip_emb = self.image_embed(ip)
|
613 |
+
context = torch.cat((context, ip_emb), 1)
|
614 |
|
615 |
h = x
|
616 |
for module in self.input_blocks:
|
imagedream/pipeline_imagedream.py
CHANGED
@@ -2,7 +2,7 @@ import torch
|
|
2 |
import inspect
|
3 |
import numpy as np
|
4 |
from typing import Callable, List, Optional, Union
|
5 |
-
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel,
|
6 |
from diffusers import AutoencoderKL, DiffusionPipeline
|
7 |
from diffusers.utils import (
|
8 |
deprecate,
|
@@ -16,6 +16,8 @@ from diffusers.utils.torch_utils import randn_tensor
|
|
16 |
|
17 |
from .models import MultiViewUNetModel
|
18 |
|
|
|
|
|
19 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
20 |
|
21 |
|
@@ -62,7 +64,7 @@ def convert_opengl_to_blender(camera_matrix):
|
|
62 |
|
63 |
|
64 |
def get_camera(
|
65 |
-
num_frames, elevation=15, azimuth_start=0, azimuth_span=360, blender_coord=True
|
66 |
):
|
67 |
angle_gap = azimuth_span / num_frames
|
68 |
cameras = []
|
@@ -71,6 +73,9 @@ def get_camera(
|
|
71 |
if blender_coord:
|
72 |
camera_matrix = convert_opengl_to_blender(camera_matrix)
|
73 |
cameras.append(camera_matrix.flatten())
|
|
|
|
|
|
|
74 |
return torch.tensor(np.stack(cameras, 0)).float()
|
75 |
|
76 |
|
@@ -82,8 +87,8 @@ class ImageDreamPipeline(DiffusionPipeline):
|
|
82 |
tokenizer: CLIPTokenizer,
|
83 |
text_encoder: CLIPTextModel,
|
84 |
scheduler: DDIMScheduler,
|
85 |
-
feature_extractor:
|
86 |
-
image_encoder: CLIPVisionModel,
|
87 |
requires_safety_checker: bool = False,
|
88 |
):
|
89 |
super().__init__()
|
@@ -449,10 +454,36 @@ class ImageDreamPipeline(DiffusionPipeline):
|
|
449 |
latents = latents * self.scheduler.init_noise_sigma
|
450 |
return latents
|
451 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
@torch.no_grad()
|
453 |
def __call__(
|
454 |
self,
|
455 |
-
image, # input image
|
456 |
prompt: str = "a car",
|
457 |
height: int = 256,
|
458 |
width: int = 256,
|
@@ -465,7 +496,7 @@ class ImageDreamPipeline(DiffusionPipeline):
|
|
465 |
output_type: Optional[str] = "image",
|
466 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
467 |
callback_steps: int = 1,
|
468 |
-
|
469 |
device=torch.device("cuda:0"),
|
470 |
):
|
471 |
self.unet = self.unet.to(device=device)
|
@@ -482,7 +513,18 @@ class ImageDreamPipeline(DiffusionPipeline):
|
|
482 |
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
483 |
timesteps = self.scheduler.timesteps
|
484 |
|
485 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
prompt=prompt,
|
487 |
device=device,
|
488 |
num_images_per_prompt=num_images_per_prompt,
|
@@ -493,8 +535,8 @@ class ImageDreamPipeline(DiffusionPipeline):
|
|
493 |
|
494 |
# Prepare latent variables
|
495 |
latents: torch.Tensor = self.prepare_latents(
|
496 |
-
|
497 |
-
4,
|
498 |
height,
|
499 |
width,
|
500 |
prompt_embeds_pos.dtype,
|
@@ -503,9 +545,10 @@ class ImageDreamPipeline(DiffusionPipeline):
|
|
503 |
None,
|
504 |
)
|
505 |
|
506 |
-
camera = get_camera(
|
|
|
507 |
|
508 |
-
# Prepare extra step kwargs.
|
509 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
510 |
|
511 |
# Denoising loop
|
@@ -523,15 +566,22 @@ class ImageDreamPipeline(DiffusionPipeline):
|
|
523 |
noise_pred = self.unet.forward(
|
524 |
x=latent_model_input,
|
525 |
timesteps=torch.tensor(
|
526 |
-
[t] *
|
527 |
dtype=latent_model_input.dtype,
|
528 |
device=device,
|
529 |
),
|
530 |
context=torch.cat(
|
531 |
-
[prompt_embeds_neg] *
|
532 |
),
|
533 |
-
num_frames=
|
534 |
camera=torch.cat([camera] * multiplier),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
535 |
)
|
536 |
|
537 |
# perform guidance
|
@@ -542,7 +592,6 @@ class ImageDreamPipeline(DiffusionPipeline):
|
|
542 |
)
|
543 |
|
544 |
# compute the previous noisy sample x_t -> x_t-1
|
545 |
-
# latents = self.scheduler.step(noise_pred.to(dtype=torch.float32), t, latents.to(dtype=torch.float32)).prev_sample.to(prompt_embeds.dtype)
|
546 |
latents: torch.Tensor = self.scheduler.step(
|
547 |
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
548 |
)[0]
|
|
|
2 |
import inspect
|
3 |
import numpy as np
|
4 |
from typing import Callable, List, Optional, Union
|
5 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPFeatureExtractor
|
6 |
from diffusers import AutoencoderKL, DiffusionPipeline
|
7 |
from diffusers.utils import (
|
8 |
deprecate,
|
|
|
16 |
|
17 |
from .models import MultiViewUNetModel
|
18 |
|
19 |
+
import kiui
|
20 |
+
|
21 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
22 |
|
23 |
|
|
|
64 |
|
65 |
|
66 |
def get_camera(
|
67 |
+
num_frames, elevation=15, azimuth_start=0, azimuth_span=360, blender_coord=True, extra_view=False,
|
68 |
):
|
69 |
angle_gap = azimuth_span / num_frames
|
70 |
cameras = []
|
|
|
73 |
if blender_coord:
|
74 |
camera_matrix = convert_opengl_to_blender(camera_matrix)
|
75 |
cameras.append(camera_matrix.flatten())
|
76 |
+
if extra_view:
|
77 |
+
dim = len(cameras[0])
|
78 |
+
cameras.append(np.zeros(dim))
|
79 |
return torch.tensor(np.stack(cameras, 0)).float()
|
80 |
|
81 |
|
|
|
87 |
tokenizer: CLIPTokenizer,
|
88 |
text_encoder: CLIPTextModel,
|
89 |
scheduler: DDIMScheduler,
|
90 |
+
feature_extractor: CLIPFeatureExtractor = None,
|
91 |
+
image_encoder: CLIPVisionModel = None,
|
92 |
requires_safety_checker: bool = False,
|
93 |
):
|
94 |
super().__init__()
|
|
|
454 |
latents = latents * self.scheduler.init_noise_sigma
|
455 |
return latents
|
456 |
|
457 |
+
def encode_image(self, image, device, num_images_per_prompt):
|
458 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
459 |
+
|
460 |
+
image = (image * 255).astype(np.uint8)
|
461 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
462 |
+
|
463 |
+
image = image.to(device=device, dtype=dtype)
|
464 |
+
|
465 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
466 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
467 |
+
|
468 |
+
# imagedream directly use zero as uncond image embeddings
|
469 |
+
uncond_image_enc_hidden_states = torch.zeros_like(image_enc_hidden_states)
|
470 |
+
|
471 |
+
return uncond_image_enc_hidden_states, image_enc_hidden_states
|
472 |
+
|
473 |
+
def encode_image_latents(self, image, device, num_images_per_prompt):
|
474 |
+
|
475 |
+
image = torch.from_numpy(image).to(device)
|
476 |
+
posterior = self.vae.encode(image).latent_dist
|
477 |
+
|
478 |
+
latents = posterior.sample() * self.vae.config.scaling_factor # [B, C, H, W]
|
479 |
+
latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
|
480 |
+
|
481 |
+
return torch.zeros_like(latents), latents
|
482 |
+
|
483 |
@torch.no_grad()
|
484 |
def __call__(
|
485 |
self,
|
486 |
+
image, # input image, np.ndarray float32!
|
487 |
prompt: str = "a car",
|
488 |
height: int = 256,
|
489 |
width: int = 256,
|
|
|
496 |
output_type: Optional[str] = "image",
|
497 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
498 |
callback_steps: int = 1,
|
499 |
+
num_frames: int = 4,
|
500 |
device=torch.device("cuda:0"),
|
501 |
):
|
502 |
self.unet = self.unet.to(device=device)
|
|
|
513 |
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
514 |
timesteps = self.scheduler.timesteps
|
515 |
|
516 |
+
# encode image
|
517 |
+
assert isinstance(image, np.ndarray) and image.dtype == np.float32
|
518 |
+
|
519 |
+
self.image_encoder = self.image_encoder.to(device=device)
|
520 |
+
image_embeds_neg, image_embeds_pos = self.encode_image(image, device, num_images_per_prompt)
|
521 |
+
kiui.lo(image_embeds_pos) # should be [1, 257, 1280]?
|
522 |
+
|
523 |
+
image_latents_neg, image_latents_pos = self.encode_image_latents(image, device, num_images_per_prompt)
|
524 |
+
kiui.lo(image_latents_pos)
|
525 |
+
|
526 |
+
# encode text
|
527 |
+
_prompt_embeds = self._encode_prompt(
|
528 |
prompt=prompt,
|
529 |
device=device,
|
530 |
num_images_per_prompt=num_images_per_prompt,
|
|
|
535 |
|
536 |
# Prepare latent variables
|
537 |
latents: torch.Tensor = self.prepare_latents(
|
538 |
+
(num_frames + 1) * num_images_per_prompt,
|
539 |
+
4, # channel
|
540 |
height,
|
541 |
width,
|
542 |
prompt_embeds_pos.dtype,
|
|
|
545 |
None,
|
546 |
)
|
547 |
|
548 |
+
camera = get_camera(num_frames, extra_view=True).to(dtype=latents.dtype, device=device)
|
549 |
+
camera = camera.repeat(num_images_per_prompt, 1).to(self.device)
|
550 |
|
551 |
+
# Prepare extra step kwargs.
|
552 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
553 |
|
554 |
# Denoising loop
|
|
|
566 |
noise_pred = self.unet.forward(
|
567 |
x=latent_model_input,
|
568 |
timesteps=torch.tensor(
|
569 |
+
[t] * (num_frames + 1) * multiplier,
|
570 |
dtype=latent_model_input.dtype,
|
571 |
device=device,
|
572 |
),
|
573 |
context=torch.cat(
|
574 |
+
[prompt_embeds_neg] * (num_frames + 1) + [prompt_embeds_pos] * (num_frames + 1)
|
575 |
),
|
576 |
+
num_frames=num_frames + 1,
|
577 |
camera=torch.cat([camera] * multiplier),
|
578 |
+
# for with_ip
|
579 |
+
ip=torch.cat(
|
580 |
+
[image_embeds_neg] * (num_frames + 1) + [image_embeds_pos] * (num_frames + 1)
|
581 |
+
),
|
582 |
+
ip_img=torch.cat(
|
583 |
+
[image_latents_neg] * (num_frames + 1) + [image_latents_pos] * (num_frames + 1)
|
584 |
+
),
|
585 |
)
|
586 |
|
587 |
# perform guidance
|
|
|
592 |
)
|
593 |
|
594 |
# compute the previous noisy sample x_t -> x_t-1
|
|
|
595 |
latents: torch.Tensor = self.scheduler.step(
|
596 |
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
597 |
)[0]
|